《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (12): 45-51.doi: 10.6040/j.issn.1671-9352.0.2021.058
• • 上一篇
薛婷婷,徐燕,刘晓平
XUE Ting-ting, XU Yan, LIU Xiao-ping
摘要: 利用环绕定理和山路定理,研究一类分数阶变系数Dirichlet边值问题非平凡弱解的存在性。在变分框架下,此类问题的研究多是需要Ambrosetti-Rabinowtiz条件,给出了比Ambrosetti-Rabinowtiz条件弱的条件。
中图分类号:
[1] 胡芳芳, 胡卫敏. 具p-Laplacian算子的分数阶微分方程边值问题的多重正解[J]. 东北师大学报(自然科学版), 2020, 52(3):62-67. HU Fangfang, HU Weimin. Multiple positive solutions for boundary value problems of fractional differential equations with p-Laplacian operator[J]. Journal of Northeast Normal University(Natural Science Edition), 2020, 52(3):62-67. [2] ERVIN V, ROOP J. Variational formulation for the stationary fractional advection dispersion equation[J]. Numerical Methods for Partial Differential Equations, 2006, 22(3):558-576. [3] 王永庆, 刘立山. Banach空间中分数阶微分方程m点边值问题的正解[J]. 数学物理学报, 2012, 32(1):246-256. WANG Yongqing, LIU Lishan. Positive solutions fractional m-point boundary value problem in Banach spaces[J]. Acta Mathematica Scientia, 2012, 32(1):246-256. [4] 刘帅, 贾梅, 秦小娜. 带积分边值条件的分数阶微分方程解的存在性和唯一性[J]. 上海理工大学学报, 2014, 36(5):409-415. LIU Shuai, JIA Mei, QIN Xiaona. Existence and uniqueness of solutions of the fractional differential equation with integral boundary value conditions[J]. Journal of University of Shanghai for Science and Technology, 2014, 36(5):409-415. [5] 苏新卫. 分数阶微分方程耦合系统边值问题解的存在性[J]. 工程数学学报, 2009, 26(1):133-137. SU Xinwei. The existence of solution to boundary value problems for a coupled system of nonlinear fractional differential equations[J]. Chinese Journal of Engineering Mathematics, 2009, 26(1):133-137. [6] 陆心怡, 张兴秋, 王林. 一类分数阶微分方程m点边值问题正解的存在性[J]. 系统科学与数学, 2014, 34(2):218-230. LU Xinyi, ZHANG Xingqiu, WANG Lin. Existence of positive solutions for a class of fractional differential equations with m-point boundary value conditions[J]. Journal of Systems Science and Mathematical Sciences, 2014, 34(2):218-230. [7] JIAO Feng, ZHOU Yong. Existence results for fractional boundary value problem via critical point theory[J]. International Journal of Bifurcation and Chaos, 2012, 22(4):1250086. [8] ZHANG Ziheng, YUAN Rong. Infinitely-many solutions for subquadratic fractional Hamiltonian systems with potential changing sign[J]. Advances in Nonlinear Analysis, 2015, 4(1):59-72. [9] TORRES C. Ground state solution for differential equations with left and right fractional derivatives[J]. Mathematical Methods in the Applied Sciences, 2016, 38(18):5063-5073. [10] IDCZAK D, WALCZAK S. Fractional Sobolev spaces via Riemann-Liouville derivatives[J/OL]. Journal of Function Spaces and Applications, 2013[2021-01-18]. https://doi.org/10.1155/2013/128043. [11] MAWHIN J, WILLEM M. Critical point theory and Hamiltonian systems[M]. New York: Springer-Verlag, 1989. [12] 宣本金. 变分法:理论与应用[M].合肥: 中国科学技术大学出版社, 2006. XUAN Benjin. Variational method: theory and application[M]. Hefei: Press of University of Science and Technology of China, 2006. [13] BREZIS H. Functional analysis, Sobolev spaces and partial differential equations[M]. New York: Springer, 2011. |
[1] | 罗李平,曾云辉,罗振国. 一类非线性阻尼分数阶微分方程的振动条件[J]. 《山东大学学报(理学版)》, 2021, 56(12): 40-44. |
[2] | 张雅楠,杨雅琦,佟玉霞. 一类A-调和方程障碍问题弱解的局部梯度估计[J]. 《山东大学学报(理学版)》, 2020, 55(6): 76-83. |
[3] | 王培婷,李安然,魏重庆. 下临界Choquard型线性耦合系统基态解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(8): 62-67. |
[4] | 张粘,贾高. 一类带有非局部项的四阶椭圆方程无穷多高能量解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(6): 81-87. |
[5] | 吴忆佳,成荣. 一类Schrödinger方程的无穷多非平凡解[J]. 《山东大学学报(理学版)》, 2019, 54(2): 84-88. |
[6] | 杨飞,刘希强. 变系数GKP方程的精确解[J]. 《山东大学学报(理学版)》, 2019, 54(2): 111-120. |
[7] | 宋君秋,贾梅,刘锡平,李琳. 具p-Laplace算子分数阶非齐次边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(10): 57-66. |
[8] | 李会会,刘希强,辛祥鹏. 变系数Benjamin-Bona-Mahony-Burgers方程的微分不变量和精确解[J]. 山东大学学报(理学版), 2018, 53(10): 51-60. |
[9] | 甄苇苇,曾剑,任建龙. 基于变分理论与时间相关的抛物型反源问题[J]. 山东大学学报(理学版), 2018, 53(10): 61-71. |
[10] | 冯海星,翟成波. 高阶非线性分数阶微分方程系统的多个正解[J]. 山东大学学报(理学版), 2017, 52(12): 48-57. |
[11] | 张迪,刘文斌. 带p(t)-Laplacian算子的分数阶微分方程共振无穷多点边值问题解的存在性[J]. 山东大学学报(理学版), 2017, 52(12): 72-80. |
[12] | 苏小凤,贾梅,李萌萌. 共振条件下分数阶微分方程积分边值问题解的存在性[J]. 山东大学学报(理学版), 2016, 51(8): 66-73. |
[13] | 江静,高庆龄,张克玉. 时标上二阶Dirichlet边值问题弱解的存在性[J]. 山东大学学报(理学版), 2016, 51(6): 99-103. |
[14] | 仲秋艳,张兴秋. 含参数及p-Laplacian算子的奇异分数阶微分方程积分边值问题的正解[J]. 山东大学学报(理学版), 2016, 51(6): 78-84. |
[15] | 张明峰, 柳泽慧, 周小双. 响应变量缺失时纵向数据下变系数部分线性测量误差模型的经验似然推断[J]. 山东大学学报(理学版), 2015, 50(11): 127-134. |
|