《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (6): 81-87.doi: 10.6040/j.issn.1671-9352.0.2018.620
• • 上一篇
张粘,贾高*
ZHANG Nian, JIA Gao*
摘要: 在全空间上研究了一类带有非局部项的四阶椭圆型方程:{Δ2u-(a+b∫RN|∇u|2dx)Δu+V(x)u-1/2Δ(u2)u=f(x,u), x∈RN,u(x)∈H 2(RN),其中N≤5,常数a>0, b≥0, Δ2=Δ(Δ)是重调和算子,非线性项f(x,u)不满足AR条件假设,且位势函数V(x)允许变号,利用变分法证明了该类四阶椭圆型方程存在一个高能量的弱解序列。
中图分类号:
[1] LAZERA C, MCKENNA. P J. Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis[J]. SIAM Review, 1990, 32(4):537-578. [2] SUN Juntao, WUT Sungfang. Ground state solutions for an indefinite Kirchhoff type problem with steep potential well[J]. Journal of Differential Equations, 2014, 256(4):1771-1792. [3] FANG Xiangdong, HAN Zhiqing. Existence of a ground state solution for a quasilinear Schrödinger equation[J]. Advance Nonlinear Studies, 2014, 14(4):941-950. [4] CHIPOT M, LOVAT B. Some remarks on nonlocal elliptic and parabolic problems[J]. Nonlinear Analysis Theory Methods & Applications, 1997, 30(7):4619-4627. [5] MAO Anmin, CHANG Hejie. Kirchhoff type problems in RN with radial potentials and locally Lipschitz functional[J]. Applied Mathematics Letters, 2016, 62:49-54. [6] LI Hongying. Existence of positive ground state solutions for a critical Kirchhoff type problem with sign-changing potential [J]. Computers & Mathematics with Applications, 2018, 85(8):2858-2873. [7] LI Yuhua, LI Fuyi, SHI Junping. Existence of a positive solution to Kirchhoff type problems without compactness conditions [J]. Journal of Differential Equations, 2012, 253(7): 2285-2294. [8] ZHANG Jian, TANG Xianhua, ZHANG Wen. Existence of multiple solutions of Kirchhoff type equation with sign-changing potential[J]. Applied Mathematics & Computation, 2014, 242:491-499. [9] WU Xian. Existence of nontrivial solutions and high energy solutions for Schrödinger-Kirchhoff-type equations in RN[J]. Nonlinear Analysis, 2012, 75(8):3470-3479. [10] CHENG Biao, TANG Xianhua. High energy solutions of modified quasilinear fourth-order elliptic equations with sigh-changing potential[J]. Computers & Mathematics with Applications, 2017, 73(1):27-36. [11] CHEN Shaoxiong, LIU Jiu, WU Xian. Existence and multiplicity of nontrivial solutions for a class of modified nonlinear fourth-order elliptic equations on RN[J]. Applied Mathematics & Computation, 2014, 248:593-601. [12] SALVATORE A. Multiple solutions for perturbed elliptic equations in unbounded domains[J]. Advanced Nonlinear Studies, 2003, 3(1):1-23. [13] RABINOWITZ P H. Minimax methods in critical point theory with applications to differential equations[M]. Rhode Island: American Mathematical Society, 1986. [14] WILLEM M. Minimax theorems[M]. Boston: Birkhäuser, 1996. |
[1] | 吴忆佳,成荣. 一类Schrödinger方程的无穷多非平凡解[J]. 《山东大学学报(理学版)》, 2019, 54(2): 84-88. |
[2] | 江静,高庆龄,张克玉. 时标上二阶Dirichlet边值问题弱解的存在性[J]. 山东大学学报(理学版), 2016, 51(6): 99-103. |
[3] | . 用变分法研究势场V(r)中存在束缚态的条件[J]. J4, 2009, 44(5): 62-66. |
[4] | 许万银. 一类拟线性Neumann问题的多重解[J]. J4, 2009, 44(10): 39-42. |
|