您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (6): 81-87.doi: 10.6040/j.issn.1671-9352.0.2018.620

• • 上一篇    

一类带有非局部项的四阶椭圆方程无穷多高能量解的存在性

张粘,贾高*   

  1. 上海理工大学理学院, 上海 200093
  • 发布日期:2019-06-05
  • 作者简介:张粘(1995— ),男,硕士研究生,从事偏微分方程的研究. E-mail:nianzhang411@126.com*通信作者简介:贾高(1960— ),男,博士,教授,从事偏微分方程的研究. E-mail:gaojia89@163.com
  • 基金资助:
    国家自然科学基金资助项目(11171220)

Existence of infinitely many high energy solutions of a class of fourth-order elliptic equations with nonlocal terms

ZHANG Nian, JIA Gao*   

  1. School of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
  • Published:2019-06-05

摘要: 在全空间上研究了一类带有非局部项的四阶椭圆型方程:{Δ2u-(a+b∫RN|∇u|2dx)Δu+V(x)u-1/2Δ(u2)u=f(x,u), x∈RN,u(x)∈H 2(RN),其中N≤5,常数a>0, b≥0, Δ2=Δ(Δ)是重调和算子,非线性项f(x,u)不满足AR条件假设,且位势函数V(x)允许变号,利用变分法证明了该类四阶椭圆型方程存在一个高能量的弱解序列。

关键词: Kirchhoff类方程, 变号位势, 变分法, Fountain定理, 无穷多解

Abstract: We study a class of fourth-order elliptic equations with nonlocal term,{Δ2u-(a+b∫RN|∇u|2dx)Δu+V(x)u-1/2Δ(u2)u=f(x,u), x∈RN,u(x)∈H 2(RN),Where N≤5, constants a>0, b≥0, Δ2=Δ(Δ)is the biharmonic operater, the nonlinearity f(x,u) doesnt satisfy AR condition and the potential function V(x) is also allowed to be sign-changing. We establish the existence of a sequence of high energy weak solutions for this class of elliptic equations via variational methods.

Key words: Kirchhoff type equation, sign-changing potential, variational methods, Fountain theorem, infinitely many solutions

中图分类号: 

  • O175
[1] LAZERA C, MCKENNA. P J. Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis[J]. SIAM Review, 1990, 32(4):537-578.
[2] SUN Juntao, WUT Sungfang. Ground state solutions for an indefinite Kirchhoff type problem with steep potential well[J]. Journal of Differential Equations, 2014, 256(4):1771-1792.
[3] FANG Xiangdong, HAN Zhiqing. Existence of a ground state solution for a quasilinear Schrödinger equation[J]. Advance Nonlinear Studies, 2014, 14(4):941-950.
[4] CHIPOT M, LOVAT B. Some remarks on nonlocal elliptic and parabolic problems[J]. Nonlinear Analysis Theory Methods & Applications, 1997, 30(7):4619-4627.
[5] MAO Anmin, CHANG Hejie. Kirchhoff type problems in RN with radial potentials and locally Lipschitz functional[J]. Applied Mathematics Letters, 2016, 62:49-54.
[6] LI Hongying. Existence of positive ground state solutions for a critical Kirchhoff type problem with sign-changing potential [J]. Computers & Mathematics with Applications, 2018, 85(8):2858-2873.
[7] LI Yuhua, LI Fuyi, SHI Junping. Existence of a positive solution to Kirchhoff type problems without compactness conditions [J]. Journal of Differential Equations, 2012, 253(7): 2285-2294.
[8] ZHANG Jian, TANG Xianhua, ZHANG Wen. Existence of multiple solutions of Kirchhoff type equation with sign-changing potential[J]. Applied Mathematics & Computation, 2014, 242:491-499.
[9] WU Xian. Existence of nontrivial solutions and high energy solutions for Schrödinger-Kirchhoff-type equations in RN[J]. Nonlinear Analysis, 2012, 75(8):3470-3479.
[10] CHENG Biao, TANG Xianhua. High energy solutions of modified quasilinear fourth-order elliptic equations with sigh-changing potential[J]. Computers & Mathematics with Applications, 2017, 73(1):27-36.
[11] CHEN Shaoxiong, LIU Jiu, WU Xian. Existence and multiplicity of nontrivial solutions for a class of modified nonlinear fourth-order elliptic equations on RN[J]. Applied Mathematics & Computation, 2014, 248:593-601.
[12] SALVATORE A. Multiple solutions for perturbed elliptic equations in unbounded domains[J]. Advanced Nonlinear Studies, 2003, 3(1):1-23.
[13] RABINOWITZ P H. Minimax methods in critical point theory with applications to differential equations[M]. Rhode Island: American Mathematical Society, 1986.
[14] WILLEM M. Minimax theorems[M]. Boston: Birkhäuser, 1996.
[1] 吴忆佳,成荣. 一类Schrödinger方程的无穷多非平凡解[J]. 《山东大学学报(理学版)》, 2019, 54(2): 84-88.
[2] 江静,高庆龄,张克玉. 时标上二阶Dirichlet边值问题弱解的存在性[J]. 山东大学学报(理学版), 2016, 51(6): 99-103.
[3] . 用变分法研究势场V(r)中存在束缚态的条件[J]. J4, 2009, 44(5): 62-66.
[4] 许万银. 一类拟线性Neumann问题的多重解[J]. J4, 2009, 44(10): 39-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!