《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (5): 107-115.doi: 10.6040/j.issn.1671-9352.0.2024.126
• • 上一篇
冯春宇,吕艳*
FENG Chunyu, LYU Yan*
摘要: 建立了一类带Lévy噪声的随机McKean-Vlasov方程和其对应的相互作用粒子系统的参数估计之间在平均极限下的关系。给出简单的平均场极限结果,即相互作用粒子系统的解在L2(Ω)意义下的收敛。得到了两系统中未知参数的极大似然估计(^overθ)N和(-overθ),并证明当N趋向无穷大时,(^overθ)N依概率收敛到(-overθ)。
中图分类号:
[1] KAC M. Foundations of kinetic theory[J]. In Proceedings of the Third Berkeley Symposium on Athematical Statistics and Probability, 1956, 3(3):171-197. [2] MCKEAN H P. A class of Markov processes associated with nonlinear parabolic equations[J]. Proceedings of the National Academy of Sciences, 1996, 56(6):1907-1911. [3] CHAUDRU DE RAYNAL P E. Strong well posedness of McKean-Vlasov stochastic differential equations with Hölder drift[J]. Stochastic Processes and Their Applications, 2020, 130(1):79-107. [4] HUANG Xing, WANG Fengyu. Distribution dependent SDEs with singular coefficients[J]. Stochastic Processes and their Application, 2019, 129(11):4747-4770. [5] BAUER M, MEYER-BRANDIS T, PROSKE F. Strong solutions of mean-field stochastic differential equations with irregular drift[J]. Electronic Journal of Probability, 2018, 23:1-35. [6] MISHURA Y, VERETENNIKOV A Y. Existence and uniqueness theorems forsolutions of McKean-Vlasov stochastic equations[J]. Theory of Probability and Mathematical Statistics, 2021, 103:59-101. [7] BOLLEY F, GENTIL I, GUILLIN A. Uniform convergence to equilibrium for granular media[J]. Archive for Rational Mechanics and Analysis, 2013, 208(2):429-445. [8] TUGAUT J. Convergence to the equilibria for self-stabilizing processes in double-well landscape[J]. The Annals of Probability, 2013, 41(3):1427-1460. [9] DURMUS A, EBERLE A, GUILLIN A. An elementary approach to uniform in time propagation of chaos[J]. Proceedings of the American Mathematical Society, 2010, 148(12):5387-5398. [10] MALRIEU F. Convergence to equilibrium for granular media equations and their Euler schemes[J]. Annals of Applied Probability, 2003, 13(2):540-560. [11] WEN Jianghui, WANG Xiangjun, MAO Shuhua. Maximum likelihood estimation of McKean-Vlasov stochastic differential equation and its application[J]. Applied Mathematics and Computation, 2016, 274(1):237-246. [12] KASONGA R A. Maximum likelihood theory for large interacting systems[J]. SIAM Journal on Applied Mathematics, 1990, 50(3):865-875. [13] 王金金. 平稳JCIR模型中漂移项的最小二乘估计[D]. 银川:北方民族大学,2022. WANG Jinjin. Least squares estimation of the drift term in the stationary JCIR model [D]. Yinchuan: North Minzu University, 2022. [14] MASUDA H. Convergence of Gaussian quasi-likelihood random fields for ergodic Lévy driven SDE observed at high frequency[J]. The Annals of Statistics, 2013, 41(3):1593-1641. [15] MASUDA H. Non-Gaussian quasi-likelihood estimation of SDE driven by locally stable Lévy process[J]. Stochastic Processes and Their Applications, 2019, 129(3):1013-1059. [16] HU Yaozhong, LONG Hongwei. Parameter estimation for Ornstein-Uhlenbeck processes driven by α-stable Lévy motions[J]. Communications on Stochastic Analysis, 2007, 1(2):175-192. [17] SHARROCK L, KANTAS N, PARPAS P. Online parameter estimation for the McKean-Vlasov stochastic differential equation[J]. Stochastic Processes and their Applications, 2023, 162(C):481-546. [18] APPLEBAUM D. Lévy process and stochastic calculus[M]. Cambridge: Cambridge University Press, 2009:100-131. [19] MAI H. Efficient maximum likelihood estimation for Lévy-driven Ornstein-Uhlenbeck processes[J]. Bernoulli, 2014, 20(2):919-957. [20] MAO Wei, HU Liangjian, YOU Surong. The averaging method for multivalued SDEs with jumps and non-Lipschitz coefficients[J]. Discrete and Continuous Dynamical Systems, 2019, 24(9):4937-4954. |
[1] | 王淑影,张亚男,程云飞,周丽芳. 带治愈组右删失数据的模型平均研究[J]. 《山东大学学报(理学版)》, 2024, 59(4): 108-116. |
[2] | 龙兵,蒋再富. 定数截尾下步进应力部分加速寿命试验模型的统计推断[J]. 《山东大学学报(理学版)》, 2024, 59(12): 122-129. |
[3] | 赵玉环,张晓斌. 线性随机发展方程的极大似然估计[J]. 山东大学学报(理学版), 2014, 49(05): 54-60. |
|