您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (11): 74-84.doi: 10.6040/j.issn.1671-9352.0.2024.263

•   • 上一篇    下一篇

PCM-PCHE对SCO2布雷顿循环在变工况下的影响

张廉洁1(),李威2,杨萍1,曾敏1,*(),王秋旺1   

  1. 1. 西安交通大学能源与动力工程学院,陕西 西安 710049
    2. 南京工业大学机械与动力工程学院,江苏 南京 211816
  • 收稿日期:2024-07-27 出版日期:2024-11-20 发布日期:2024-11-29
  • 通讯作者: 曾敏 E-mail:zlj19951231@stu.xjtu.edu.cn;zengmin@mail.xjtu.edu.cn
  • 作者简介:张廉洁(1995—),男,博士研究生,研究方向为布雷顿循环、相变材料、智能控制. E-mail: zlj19951231@stu.xjtu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(52176085);国家重点研发计划项目(2023YFE0204800);江苏省自然科学基金项目(BK20230319)

Effect of PCM-PCHE on SCO2 Brayton cycle under variable operating conditions

Lianjie ZHANG1(),Wei LI2,Ping YANG1,Min ZENG1,*(),Qiuwang WANG1   

  1. 1. School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
    2. College of Mechanical and Power Engineering, Nanjing University of Technology, Nanjing 211816, Jiangsu, China
  • Received:2024-07-27 Online:2024-11-20 Published:2024-11-29
  • Contact: Min ZENG E-mail:zlj19951231@stu.xjtu.edu.cn;zengmin@mail.xjtu.edu.cn

摘要:

为了削弱超临界二氧化碳(supercritical carbon dioxide,SCO2)布雷顿循环系统的温度不稳定等变工况对循环系统的影响,本研究将内嵌相变材料的印刷电路板换热器(phase change materials-printed circuit heat exchanger,PCM-PCHE)在数值模拟计算中的结果进行拟合与归纳,建立PCM-PCHE与SCO2布雷顿循环的耦合动态仿真模型,并通过其在稳定条件下的参数与实验值的对比完成了模型验证。然后观测SCO2布雷顿循环系统核心参数在温度波动以及负载变动时的变工况特性。结果表明,添加PCM-PCHE对工作条件可变的SCO2布雷顿循环系统具有更好的稳定效果,使得循环效率的波动幅值降低了40.8%,有PCM的工况转子速度稳定值比无PCM工况低18 r/min,同时减小了透平机械的等熵效率在负载变化时的变动幅度,有利于系统的稳定。

关键词: 换热器, 相变材料, 布雷顿循环, 温度波动, 负载变化, 动态特性

Abstract:

In order to weaken the influence of variable operating conditions such as temperature instability on the supercritical carbon dioxide (SCO2) Brayton cycle, this study fitted and generalized the results of the phase change materials-printed circuit heat exchanger (PCM-PCHE) embedded in numerical simulations, and established a dynamic simulation model of the coupling between PCM-PCHE and SCO2 Brayton cycle. The coupled dynamic simulation model of SCO2 Brayton cycle was established, and the model validation was completed by the comparison of its parameters with experimental values under stable conditions. Then the variable operating conditions characteristics of the core parameters of the SCO2 Brayton cycle system were observed under temperature fluctuations as well as load variations. The results showed that the addition of PCM-PCHE has a better stabilizing effect on the SCO2 Brayton cycle system with variable operating conditions, which reduced the fluctuation amplitude of the cycle efficiency by 40.8%, and the stabilized value of the rotor speed was lower than that without PCM by 18 r/min, and at the same time, it weakened the variation amplitude of the isentropic efficiency of the turbomachinery when the load varied, which was conducive to the stabilization of the system.

Key words: heat exchanger, phase change material, Brayton cycle, temperature fluctuation, load variation, dynamic characteristics

中图分类号: 

  • TK123

图1

PCM-PCHE的物理模型[24]"

图2

用于数值模拟计算的单元示意图"

图3

PCM-PCHE内部传热模型示意图"

表1

3层PCM梯级布置及EG的物理参数[24]"

层级 填充材料 密度/(kg·m-3) 比热容/[kJ/(kg·K)] 导热系数/[W/(m·K)] 潜热/(kJ/kg) 熔点/K
PCM1 KOH 2 110.0 1.47 0.50 149.7 653.15
PCM2 NaNO2 1 810.0 1.71 0.67 180.0 531.15
PCM3 D-Mannitol 1 485.0 2.05 0.31 326.0 436.00
EG EG 4.1 0.71 129.00

图4

再压缩布雷顿循环示意图"

表2

PCM-PCHE与实验值的温度及误差对比"

项目 Th, i/K Tc, i/K Th, o/K Tc, o/K
实验值 750.0 389.0 418.0 698.0
PCM-PCHE模型值 737.0 389.1 418.5 706.9
相对误差/% 1.73 0.03 0.12 1.28

图5

PCM-PCHE在温度波动下的数值模拟计算结果及其关联式拟合"

图6

SCO2布雷顿循环仿真中三层PCM在温度波动下的响应情况"

图7

超临界二氧化碳布雷顿循环中各关键参数在温度波动情况下的对比"

图8

SCO2布雷顿循环仿真中3层PCM在负载变化下的响应情况"

图9

SCO2布雷顿循环中各关键参数在温度波动情况下的对比"

1 李光霁, 付亚男. SCO2布雷顿循环及其在光热发电中的应用综述[J]. 汽轮机技术, 2024, 66 (2): 81-87, 132, 160.
doi: 10.3969/j.issn.1001-5884.2024.02.001
LI Guangji , FU Yanan . Review of SCO2 Brayton cycle and its application in photothermal power generation[J]. Turbine Technology, 2024, 66 (2): 81-87, 132, 160.
doi: 10.3969/j.issn.1001-5884.2024.02.001
2 WU P , MA Y D , GAO C T , et al. A review of research and development of supercritical carbon dioxide Brayton cycle technology in nuclear engineering applications[J]. Nuclear Engineering and Design, 2020, 368, 110767.
doi: 10.1016/j.nucengdes.2020.110767
3 XU J L , LIU C , SUN E H , et al. Perspective of SCO2 power cycles[J]. Energy, 2019, 186, 115831.
doi: 10.1016/j.energy.2019.07.161
4 OUYANG T C , SU Z X , HUANG G C , et al. Modeling and optimization of a combined cooling, cascaded power and flue gas purification system in marine diesel engines[J]. Energy Conversion and Management, 2019, 200, 112102.
doi: 10.1016/j.enconman.2019.112102
5 SAEED M , KHATOON S , KIM M H . Design optimization and performance analysis of a supercritical carbon dioxide recompression Brayton cycle based on the detailed models of the cycle components[J]. Energy Conversion and Management, 2019, 196, 242- 260.
doi: 10.1016/j.enconman.2019.05.110
6 LIU H Q , CHI Z R , ZANG S S . Optimization of a closed Brayton cycle for space power systems[J]. Applied Thermal Engineering, 2020, 179, 115611.
doi: 10.1016/j.applthermaleng.2020.115611
7 李子扬, 郑楠, 方嘉宾, 等. 再压缩S-CO2布雷顿循环性能分析及多目标优化[J]. 化工学报, 2024, 75 (6): 2143- 2156.
LI Ziyang , ZHENG Nan , FANG Jiabin , et al. Performance analysis and multi-objective optimization of recompression S-CO2 Brayton cycle[J]. CIESC Journal, 2024, 75 (6): 2143- 2156.
8 ZHANG L J , KLEMEŠ J J , ZENG M , et al. Dynamic study of the extraction ratio and interstage pressure ratio distribution in typical layouts of SCO2 Brayton cycle under temperature fluctuations[J]. Applied Thermal Engineering, 2022, 212, 118553.
doi: 10.1016/j.applthermaleng.2022.118553
9 WANG K , HE Y L , ZHU H H . Integration between supercritical CO2 Brayton cycles and molten salt solar power towers: a review and a comprehensive comparison of different cycle layouts[J]. Applied Energy, 2017, 195, 819- 836.
doi: 10.1016/j.apenergy.2017.03.099
10 ZHU S P , ZHANG K , DENG K Y . A review of waste heat recovery from the marine engine with highly efficient bottoming power cycles[J]. Renewable and Sustainable Energy Reviews, 2020, 120, 109611.
doi: 10.1016/j.rser.2019.109611
11 WANG X , WANG R , BIAN X Y , et al. Review of dynamic performance and control strategy of supercritical CO2 Brayton cycle[J]. Energy and AI, 2021, 5, 100078.
doi: 10.1016/j.egyai.2021.100078
12 王伟, 冯浩然, 岳娜, 等. 布雷顿循环冷端空冷换热器设计与变工况运行特性分析[J]. 热力发电, 2024, 53 (4): 63- 72.
WANG Wei , FENG Haoran , YUE Na , et al. Design and off-design operating characteristics analysis of Brayton cycle cold end air-cooled heat exchanger[J]. Thermal Power Generation, 2024, 53 (4): 63- 72.
13 JUNG H Y , KIM M S , KO A R , et al. Investigation of CO2 leak accident in SFR coupled with S-CO2 Brayton cycle[J]. Annals of Nuclear Energy, 2017, 103, 212- 226.
doi: 10.1016/j.anucene.2017.01.013
14 PARK J H , BAE S W , PARK H S , et al. Transient analysis and validation with experimental data of supercritical CO2 integral experiment loop by using MARS[J]. Energy, 2018, 147, 1030- 1043.
doi: 10.1016/j.energy.2017.12.092
15 YU A F , SU W , LIN X X , et al. Recent trends of supercritical CO2 Brayton cycle: bibliometric analysis and research review[J]. Nuclear Engineering and Technology, 2021, 53 (3): 699- 714.
doi: 10.1016/j.net.2020.08.005
16 MOISSEYTSEV A , SIENICKI J J . Transient accident analysis of a supercritical carbon dioxide Brayton cycle energy converter coupled to an autonomous lead-cooled fast reactor[J]. Nuclear Engineering and Design, 2008, 238 (8): 2094- 2105.
doi: 10.1016/j.nucengdes.2007.11.012
17 ZHANG L J , DENG T R , KLEMEVS J J , et al. Supercritical CO2 Brayton cycle at different heat source temperatures and its analysis under leakage and disturbance conditions[J]. Energy, 2021, 237, 121610.
doi: 10.1016/j.energy.2021.121610
18 MA T , LI M J , XU J L , et al. Study of dynamic response characteristics of S-CO2 cycle in coal-fired power plants based on real-time micro-grid load and a novel synergistic control method with variable working conditions[J]. Energy Conversion and Management, 2022, 254, 115264.
doi: 10.1016/j.enconman.2022.115264
19 MING Y , TIAN R F , ZHAO F L , et al. Control strategies and transient characteristics of a 5MWth small modular supercritical CO2 Brayton-cycle reactor system[J]. Applied Thermal Engineering, 2023, 235, 121302.
doi: 10.1016/j.applthermaleng.2023.121302
20 WANG Z , ZHANG M H , GOU J L , et al. Study on start-up characteristics of a heat pipe cooled reactor coupled with a supercritical CO2 Brayton cycle[J]. Applied Thermal Engineering, 2024, 236, 121893.
doi: 10.1016/j.applthermaleng.2023.121893
21 OLUMAYEGUN O , WANG M H . Dynamic modelling and control of supercritical CO2 power cycle using waste heat from industrial processes[J]. Fuel, 2019, 249, 89- 102.
doi: 10.1016/j.fuel.2019.03.078
22 YANG J Z , YU Z T , YAO H . Efficient turbomachinery layout design and performance comparison of supercritical CO2 cycles for high-temperature concentrated solar power plants under peak-shaving scenarios[J]. Energy, 2023, 285, 129445.
doi: 10.1016/j.energy.2023.129445
23 SHI X P , HE Q , LU C , et al. Variable load modes and operation characteristics of closed Brayton cycle pumped thermal electricity storage system with liquid-phase storage[J]. Renewable Energy, 2023, 203, 715- 730.
doi: 10.1016/j.renene.2022.12.116
24 ZHANG L J , YANG P , LI W , et al. A new structure of PCHE with embedded PCM for attenuating temperature fluctuations and its performance analysis[J]. Energy, 2022, 254, 124462.
doi: 10.1016/j.energy.2022.124462
25 YANG X M , LI C B , MA Y F , et al. High thermal conductivity of porous graphite/paraffin composite phase change material with 3D porous graphite foam[J]. Chemical Engineering Journal, 2023, 473, 145364.
doi: 10.1016/j.cej.2023.145364
26 PASCH, J J, CONBOY T M, FLEMING D D, et al.Supercritical CO2 recompression Brayton cycle: completed assembly[EB/OL]. (2012-09-01)[2024-10-17]. https://digital.library.unt.edu/ark:/67531/metadc845414/
27 DENG T R , LI X H , WANG Q W , et al. Dynamic modelling and transient characteristics of supercritical CO2 recompression Brayton cycle[J]. Energy, 2019, 180, 292- 302.
doi: 10.1016/j.energy.2019.05.074
[1] 张景晓1,刘新华2. 函数P-集合与同物系物质结构-物性规律发现[J]. J4, 2012, 47(8): 98-102.
[2] 欧阳林群1,黄秋元2,王效华1. 基于微分几何的双向矩阵变换器动态特性分析[J]. J4, 2012, 47(3): 56-60.
[3] 史开泉. 函数P-集合[J]. J4, 2011, 46(2): 62-69.
[4] 于秀清1,2 . 粗积分的粗变化率及其特性[J]. J4, 2009, 44(4): 92-96 .
[5] 于秀清,任雪芳 . F-粗积分的度量与药效识别[J]. J4, 2008, 43(4): 28-32 .
[6] 于秀清,史开泉 . 函数单向S-粗集生成的F-粗积分[J]. J4, 2008, 43(2): 29-34 .
[7] 周 杨,吕 昆, . 粗区域生成与二重粗积分[J]. J4, 2008, 43(11): 91-96 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王 琦,赵秀恒,李国君 . 超图在树环中的嵌入问题[J]. J4, 2007, 42(10): 114 -117 .
[2] 刘建亚,展 涛 . 二次Waring-Goldbach问题[J]. J4, 2007, 42(2): 1 -18 .
[3] 李敏1,2,李歧强1. 不确定奇异时滞系统的观测器型滑模控制器[J]. 山东大学学报(理学版), 2014, 49(03): 37 -42 .
[4] 马媛媛, 孟慧丽, 徐久成, 朱玛. 基于粒计算的正态粒集下的格贴近度[J]. 山东大学学报(理学版), 2014, 49(08): 107 -110 .
[5] 丰 晓,张顺华 . τ-平坦试验模与τ-平坦覆盖[J]. J4, 2007, 42(1): 31 -34 .
[6] 刘婷婷,陈志勇,李晓琴*,杨文志. 随机变量序列的Berry-Esseen界[J]. 山东大学学报(理学版), 2014, 49(03): 101 -106 .
[7] 李世龙,张云峰 . 一类基于算术均差商的有理三次插值样条的逼近性质[J]. J4, 2007, 42(10): 106 -110 .
[8] 于秀清. P-集合的(σ,τ)-扩展模型与其性质[J]. 山东大学学报(理学版), 2014, 49(04): 90 -94 .
[9] 田有功, 刘转玲. 任意支撑上5阶凸随机序的极值分布及其在保险精算中的应用[J]. 山东大学学报(理学版), 2014, 49(07): 57 -62 .
[10] 刘凌霞 . 一类平面映射在共振点附近的解析不变曲线的存在性[J]. J4, 2007, 42(2): 87 -91 .