您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2026, Vol. 61 ›› Issue (1): 103-115.doi: 10.6040/j.issn.1671-9352.0.2024.429

• • 上一篇    

T-球形模糊环境下基于减法和除法算子的灰色-多准则妥协解排序方法

邓世海1,郑婷婷1,2*,赖龙翔1   

  1. 1.安徽大学数学科学学院, 安徽 合肥 230601;2.安徽大学大学数学教学中心, 安徽 合肥 230601
  • 发布日期:2026-01-15
  • 通讯作者: 郑婷婷(1978— ),女,教授,博士,研究方向为粒计算和知识发现. E-mail:tt-zheng@163.com
  • 作者简介:邓世海(2001— ),男,硕士研究生,研究方向为粒计算和知识发现. E-mail:3315106493@qq.com*通信作者:郑婷婷(1978— ),女,教授,博士,研究方向为粒计算和知识发现. E-mail:tt-zheng@163.com
  • 基金资助:
    国家自然科学基金资助项目(61806001)

Gray-vlsekriterijumska optimizacija i kompromisno resenje method based on subtraction and division operators in T-spherical fuzzy environment

DENG Shihai1, ZHENG Tingting1,2*, LAI Longxiang1   

  1. 1. School of Mathematical Sciences, Anhui University, Hefei 230601, Anhui, China;
    2. Center for University Mathematics Teaching, Anhui University, Hefei 230601, Anhui, China
  • Published:2026-01-15

摘要: 提出T-球形模糊数的减法和除法算子,讨论T-球形模糊数减法和除法算子的性质。提出基于T-球形模糊减法和除法算子的灰色关联分析方法,并将该方法与多准则妥协解排序(vlsekriterijumska optimizacija i kompromisno resenje, VIKOR)方法结合,防止计算过程中T-球形模糊信息的丢失,利用一种新的得分函数完善T-球形模糊数的比较机制。通过实例及对比实验说明所提的基于T-球形模糊减法和除法算子的灰色-VIKOR方法的有效性和优越性,为解决T-球形模糊环境下的多属性决策问题提供新的有效的方法。

关键词: T-球形模糊集, T-球形模糊交叉熵, 减法和除法算子, 得分函数, 灰色-VIKOR方法

Abstract: The subtraction and division operators for T-spherical fuzzy numbers are proposed, and the properties of these subtraction and division operators for T-spherical fuzzy numbers are discussed. A grey relational analysis method based on T-spherical fuzzy subtraction and division operators is introduced. This method is then integrated with the vlsekriterijumska optimizacija i kompromisno resenje(VIKOR)method to prevent the loss of T-spherical fuzzy information during calculations. Additionally, a novel score function is employed to refine the comparison mechanism for T-spherical fuzzy numbers. The validity and superiority of the proposed grey-VIKOR method, grounded in T-spherical fuzzy subtraction and division operators, are demonstrated through illustrative examples and comparative experiments. This approach provides a novel and effective methodology for addressing multi-attribute decision-making problems in T-spherical fuzzy environments.

Key words: T-spherical fuzzy set, T-spherical fuzzy cross-entropy, subtraction and division operators, score function, grey-VIKOR method

中图分类号: 

  • O159
[1] ZADEH L A. Fuzzy sets[J]. Information and Control, 1965, 8(3):338-353.
[2] ATANASSSOV K T. Intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems, 1986, 20(1):87-96.
[3] YAGER R R. Pythagorean membership grades in multicriteria decision making[J]. IEEE Transactions on Fuzzy Systems, 2014, 22(4):958-965.
[4] YAGER R R, ALAJLAN N. Approximate reasoning with generalized orthopair fuzzy sets[J]. Information Fusion, 2017, 38:65-73.
[5] CUONG B C. Picture fuzzy sets[J]. Journal of Computer Science and Cybernetics, 2014, 30(4):409-420.
[6] MAHMOOD T, ULLAH K, KHAN Q, et al. An approach toward decision-making and medical diagnosis problems using the concept of spherical fuzzy sets[J]. Neural Computing and Applications, 2019, 31:7041-7053.
[7] ULLAH K, MAHMOOD T, JAN N. Similarity measures for T-spherical fuzzy sets with applications in pattern recognition[J]. Symmetry, 2018, 10(6):193.
[8] ZENG Shouzhen, GARG H, MUNIR M, et al. A multi-attribute decision making process with immediate probabilistic interactive averaging aggregation operators of T-spherical fuzzy sets and its application in the selection of solar cells[J]. Energies, 2019, 12(23):4436.
[9] CHEN Tingyu. An evolved VIKOR method for multiple-criteria compromise ranking modeling under T-spherical fuzzy uncertainty[J]. Advanced Engineering Informatics, 2022, 54:101802.
[10] WEI Guiwu. Picture fuzzy cross-entropy for multiple attribute decision making problems[J]. Journal of Business Economics and Management, 2016, 17(4):491-502.
[11] WU Xiaohui, YANG Lin, QIAN Jie. Selecting personnel with the weighted cross-entropy TOPSIS of hesitant picture fuzzy linguistic sets[J]. Journal of Mathematics, 2021, 2021(1).
[12] BOZY(·overI)G(·overI)T M C, OLGUN M, ÜNVER M, et al. Parametric picture fuzzy cross-entropy measures based on d-Choquet integral for building material recognition[J]. Applied Soft Computing, 2024, 166:112167.
[13] YANG Wei, PANG Yonfeng. T-spherical fuzzy ORESTE method based on cross-entropy measures and its application in multiple attribute decision-making[J]. Soft Computing, 2022, 26(19):10371-10387.
[14] KHAN M R, ULLAH K, KHAN Q. Multi-attribute decision-making using archimedean aggregation operator in T-spherical fuzzy environment[J]. Reports in Mechanical Engineering, 2023, 4(1):18-38.
[15] WANG H L, MAHMOOD T, ULLAH K. Improved CoCoSo method based on frank softmax aggregation operators for T-spherical fuzzy multiple attribute group decision-making[J]. International Journal of Fuzzy Systems, 2023, 25(3):1275-1310.
[16] DU Wensheng.Subtraction and division operations on intuitionistic fuzzy sets derived from the hamming distance[J]. Information Sciences, 2021, 571:206-224.
[17] LI Zhengfei, LIU Peide, QIN Xiyou. An extended VIKOR method for decision making problem with linguistic intuitionistic fuzzy numbers based on some new operational laws and entropy[J]. Journal of Intelligent & Fuzzy Systems, 2017, 33(3): 1919-1931.
[18] LIU Lantian, WU Xinxing, CHEN Guanrong, et al. Picture fuzzy interactional Bonferroni mean operators via strict triangular norms and applications to multicriteria decision making[J]. IEEE Transactions on Fuzzy Systems, 2023, 31(8): 2632-2644.
[19] 孟伟伟,郑婷婷,刘钧歌,等. 图片模糊集的减法和除法算子研究[J]. 山东大学学报(理学版),2025,60(1):45-62. MENG Weiwei, ZHENG Tingting, LIU Junge, et al. Image subtraction and division of fuzzy set operator research[J]. Journal of Shandong University(Natural Science), 2025, 60(1):45-62.
[20] WEI Guiwu. Picture fuzzy aggregation operators and their application to multiple attribute decision making[J]. Journal of Intelligent & Fuzzy Systems, 2017, 33(2):713-724.
[21] WAN G R, RONG Y, GARG H. An efficient spherical fuzzy MEREC-CoCoSo approach based on novel score function and aggregation operators for group decision making[J]. Granular Computing, 2023, 8(6):1481-1503.
[22] WANG Jihchang, CHEN Tingyu. A T-spherical fuzzy ELECTRE approach for multiple criteria assessment problem from a comparative perspective of score functions[J]. Journal of Intelligent & Fuzzy Systems, 2021, 41(2):3751-3770.
[23] LI Yanhong, SUN Gang. A novel score function determined by the residual sector area on PFNs space and its application in fuzzy decision making[J]. International Journal of Fuzzy Systems, 2024, 26(3):922-942.
[24] 邓聚龙. 灰色系统基本方法[M]. 武汉: 华中理工大学出版社, 1987:74-106. DENG Julong. Basic method of grey system[M]. Wuhan: Huazhong University of Science and Technology Press, 1987:74-106.
[25] 赵梦洁,杨玉中. 基于组合赋权-灰色VIKOR的煤矿隐患排查治理能力评估研究[J]. 矿业安全与环保,2023,50(6):141-146. ZHAO Mengjie, YANG Yuzhong. Research on evaluation of coal mine hidden danger detection and treatment ability based on combination empowerment-grey VIKOR[J]. Mining Safety & Environmental Protection, 2023, 50(6):141-146.
[26] HAN Min, ZHANG Ruiquan, QIU Tianshuang, et al.Multivariate chaotic time series prediction based on improved grey relational analysis[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, 49(10):2144-2154.
[27] HU Yichung. Constructing grey prediction models using grey relational analysis and neural networks for magnesium material demand forecasting[J]. Applied Soft Computing, 2020, 93:106398.
[28] DURAN E, DURAN B U, AKAY D, et al. Grey relational analysis between Turkeys macroeconomic indicators and domestic savings[J]. Grey Systems:Theory and Application, 2017, 7(1):45-59.
[29] FARROKHIZADEH E, SEYFI-SHISHAVAN S A, GÜNDOGDU F K, et al. A spherical fuzzy methodology integrating maximizing deviation and TOPSIS methods[J]. Engineering Applications of Artificial Intelligence, 2021, 101:104212.
[30] GANIE A H, DUTTA D, SHARMA K S. A new entropy measure and COPRAS method for spherical fuzzy sets[J]. IEEE Access, 2024, 12:63917-63931.
[31] 李清. T-球形模糊集的不确定性度量及其应用研究[D]. 合肥:安徽大学,2023. LI Qing. Uncertainty measurement of T-spherical fuzzy sets and its application[D]. Hefei: Anhui University, 2023.
[1] 刘梦迪,张贤勇,莫智文. 基于改进距离测度的概率犹豫模糊多属性群决策新方法[J]. 《山东大学学报(理学版)》, 2024, 59(3): 118-126.
[2] 周宇,周礼刚,林志超,徐鑫. 概率q阶犹豫模糊TODIM方法及其应用[J]. 《山东大学学报(理学版)》, 2023, 58(6): 9-17.
[3] 巩增泰,他广朋. 直觉模糊集所诱导的软集语义及其三支决策[J]. 《山东大学学报(理学版)》, 2022, 57(8): 68-76.
[4] 苏晓艳,陈京荣,尹会玲. 广义区间值Pythagorean三角模糊集成算子及其决策应用[J]. 《山东大学学报(理学版)》, 2022, 57(8): 77-87.
[5] 郝秀梅,刘纪芹. 外P-模糊集的截集与扩展粗集模型[J]. 《山东大学学报(理学版)》, 2020, 55(10): 1-6.
[6] 郝秀梅,李宁宁. P-信息隐藏挖掘的数量特征及应用[J]. 《山东大学学报(理学版)》, 2019, 54(9): 9-14.
[7] 张廷海,覃锋. 基于重叠函数和分组函数的蕴涵分配性[J]. 《山东大学学报(理学版)》, 2019, 54(9): 36-42.
[8] 孙倩倩,李小南. 区间毕达哥拉斯模糊集的信息度量及其应用[J]. 《山东大学学报(理学版)》, 2019, 54(9): 43-53.
[9] 程亚菲,赵彬. 模糊蕴涵关于合取2-一致模满足输入律的刻画[J]. 《山东大学学报(理学版)》, 2019, 54(8): 20-32.
[10] 于晓丹,董丽,吴聪,孔祥智. 软关联环[J]. 山东大学学报(理学版), 2018, 53(4): 31-35.
[11] 刘莉君. 布尔代数上triple-δ-导子的特征及性质[J]. 山东大学学报(理学版), 2017, 52(11): 95-99.
[12] 张琬迪,宋晓秋,吴尚伟. 一类模糊积分微分方程的模糊微分变换法[J]. 山东大学学报(理学版), 2017, 52(10): 42-49.
[13] 刘莉君. 剩余格上n-重正蕴涵滤子的特征及刻画[J]. 山东大学学报(理学版), 2017, 52(8): 48-52.
[14] 彭家寅. BL-代数的扰动模糊理想[J]. 山东大学学报(理学版), 2016, 51(10): 78-94.
[15] 卢威,宋晓秋,黄雷雷. 基于模糊积分的Hermite-Hadamard和Sandaor类型的不等式[J]. 山东大学学报(理学版), 2016, 51(8): 22-28.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!