山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (8): 22-28.doi: 10.6040/j.issn.1671-9352.0.2015.634
卢威,宋晓秋*,黄雷雷
LU Wei, SONG Xiao-qiu*, HUANG Lei-lei
摘要: 通过给出r-凸函数和Orlicz-凸函数函数定义,首先证明了基于r-凸函数的Sandor类型的模糊积分不等式,随后证明了基于Orlicz-凸函数的Hermite-Hadamard类型模糊积分不等式。最后给出一些例子来验证得到的结论。
中图分类号:
[1] SUGENO M. Theory of fuzzy integrals and its applications[M]. Tokyo: Institute of Technology, 1974. [2] WU Limin, SUN Jingbo, YE Xiqing. Hölder type inequality for Sugeno integrals [J]. Fuzzy Sets and Systems, 2010, 161(1):2337-2347. [3] CABALLERO J, SADARANGANI K. Sandors inequality for Sugeno integrals[J]. Applied Mathematics and Computation, 2011, 218(5):1617-1622. [4] CABALLERO J, SADARANGANI K. Hermite—Hadamard inequality for fuzzy integrals[J]. Applied Mathematics and Computation, 2009, 215(6):2134-2138. [5] CABALLERO J, SADARANGANI K. A Cauchy-Schwarz type inequality for fuzzy integrals[J]. Non-Linear Analysis, 2010, 73(10):3329-3335. [6] AGAHI H, MESIAR R, OUYANG Yao. General Minkowski type inequalities for Sugeno integrals[J]. Fuzzy Sets and Systems, 2010, 161(5):708-715. [7] OUYANG Yao, FANG Jinxuan, WANG Lishe. Fuzzy Chebyshev type inequality[J]. International Journal of Approximate Reasoning, 2008, 48(3):829-835. [8] SHILKRET N. Maxitive measure and integration[J]. Indagationes Mathematicae(Proceedings), 1971, 33:109-116. [9] SONG Xiaoqiu, PAN Zhi. Fuzzy algebra in triangular norm system[J]. Fuzzy Sets and Systems, 1998, 93(3):331-335. [10] LI Dongqing, SONG Xiaoqiu, YUE Tian, et al. Generalization of the Lyapunov type inequalities for pseudo-integrals[J]. Applied Mathematics and Computation, 2014, 241:64-69. [11] LI Dongqing, SONG Xiaoqiu, YUE Tian. Hermite-Hadamard type inequality for Sugeno integrals[J]. Applied Mathematics and Computation, 2014, 237:632-638. [12] 杨秀丽,宋晓秋, 卢威. 基于模糊积分的Sandors不等式[J]. 南京大学学报(数学半年刊), 2015, 32(2):144-156. YANG Xiuli, SONG Xiaoqiu, LU Wei. Sandors type inequality for fuzzy integrals[J]. Journal of Nanjing University(Mathematical Biquarterly), 2015, 32(2):144-156. [13] SONG Yazhi, SONG Xiaoqiu, LI Dongqing, et al. Berwald type inequality for extremal universal integral based on(a,m)-concave functions[J]. Journal of Mathematical Inequalities, 2015, 9(1):1-15. [14] RALESCU D, ADAMS G. The fuzzy integral[J]. Journal of Mathematical Analysis and Applications, 1980, 75(2):562-570. [15] PAP E. Null-additive set functions[M]. Dordrecht: Kluwer Academic, 1995. [16] WANG Zhenyuan, GEORGE J. KLIR. Generalized measure theory[M]. New York: Springer Verlag, 2008. [17] PINHEIRO I M R. H-H inequality for s-convex functions[J]. International Journal of Pure and Applied Mathematics, 2008, 44(4):563-579 [18] SANDOR J. On the identric and logarithmic means[J]. Advances in Biochemical Engineering, 1990, 40(1):261-270. |
[1] | 于晓丹,董丽,吴聪,孔祥智. 软关联环[J]. 山东大学学报(理学版), 2018, 53(4): 31-35. |
[2] | 刘莉君. 布尔代数上triple-δ-导子的特征及性质[J]. 山东大学学报(理学版), 2017, 52(11): 95-99. |
[3] | 张琬迪,宋晓秋,吴尚伟. 一类模糊积分微分方程的模糊微分变换法[J]. 山东大学学报(理学版), 2017, 52(10): 42-49. |
[4] | 刘莉君. 剩余格上n-重正蕴涵滤子的特征及刻画[J]. 山东大学学报(理学版), 2017, 52(8): 48-52. |
[5] | 彭家寅. BL-代数的扰动模糊理想[J]. 山东大学学报(理学版), 2016, 51(10): 78-94. |
[6] | 彭家寅. 格蕴涵代数的不分明化滤子[J]. 山东大学学报(理学版), 2016, 51(2): 119-126. |
[7] | 索春凤, 王贵君. 最大交互数对非齐次T-S模糊系统的潜在影响[J]. 山东大学学报(理学版), 2015, 50(08): 14-19. |
[8] | 彭家寅. 关联模糊集理论的伪BL-代数的软滤子[J]. 山东大学学报(理学版), 2015, 50(08): 40-45. |
[9] | 沈冲, 姚卫. 模糊完备格上模糊G-理想和模糊Galois伴随之间的一一对应[J]. 山东大学学报(理学版), 2015, 50(04): 36-41. |
[10] | 杨永伟, 贺鹏飞, 李毅君. BL-代数中的落影模糊理想[J]. 山东大学学报(理学版), 2015, 50(02): 83-89. |
[11] | 李令强, 李庆国. 格值模糊下近似算子的唯一公理刻画[J]. 山东大学学报(理学版), 2014, 49(10): 78-82. |
[12] | 韩亮,刘华文. 有限链上逻辑算子的分配性方程求解[J]. 山东大学学报(理学版), 2014, 49(2): 29-35. |
[13] | 闫立梅,徐凤生. P-信息的属性合取扩展-收缩特征与P-信息的智能发现[J]. 山东大学学报(理学版), 2014, 49(2): 98-103. |
[14] | 陈桂英. 带有阈值的广义模糊双向联想记忆#br# 网络的稳定性分析[J]. 山东大学学报(理学版), 2014, 49(1): 80-85. |
[15] | 于秀清. P-粗积分与函数双向S-粗集的粗糙度[J]. J4, 2009, 44(11): 89-92. |
|