《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (3): 37-50.doi: 10.6040/j.issn.1671-9352.7.2023.3667
Xiuxi WEI1(),Maosong PENG2,Huajuan HUANG1,*()
摘要:
针对水文地质参数求解精度不足以及传统配线法等策略在求参过程中效率低下等的问题, 提出一种基于黄金正弦加权蝴蝶优化算法的水文地质参数优化策略。首先在蝴蝶优化算法的全局与局部搜索阶段引入黄金正弦算子, 缩小算法解空间; 其次引入自适应权重, 调整算法后期种群个体移动步长与搜索方向。通过6个基准测试函数的寻优对比测试结果表明: 黄金正弦加权蝴蝶优化算法的寻优精度较高且收敛速度较快。将该优化策略应用于水文地质参数导水系数与贮水系数的优化以达到最小降深误差, 并与粒子群优化算法、配线法等优化策略进行实验对比。结果表明黄金正弦加权蝴蝶优化算法能有效优化水文地质参数并提高泰斯公式计算性能, 获得更小抽水降深误差, 为后续抽水试验提供了新方法。
中图分类号:
1 | 赵衍杰, 张志超, 王桂林, 等. 基于抽水试验确定含水层水文地质参数计算方法[J]. 山西建筑, 2022, 48 (8): 93- 95. |
ZHAO Yanjie , ZHANG Zhichao , WANG Guilin , et al. Discussion on calculation method of determining hydrogeological parameters of aquifer based on pumping test[J]. Shanxi Architecture, 2022, 48 (8): 93- 95. | |
2 | FABBROCINO S, SESSA EB, DE VITA S, et al. A GIS-based hydrogeological approach to the assessment of the groundwater circulation in the Ischia volcanic island (Italy)[J/OL]. Frontiers in Earth Science, 2022[2023-04-25]. https://doi.org/10.3389/feart.2022.883719. |
3 | AKHTER G , GE Y , HASAN M , et al. Estimation of hydrogeological parameters by using pumping, laboratory data, surface resistivity and thiessen technique in lower bari doab (Indus Basin), Pakistan[J]. Applied Sciences, 2022, 12 (6): 1- 19. |
4 | SAMADI J. Modelling hydrogeological parameters to assess groundwater pollution and vulnerability in Kashan aquifer: novel calibration-validation of multivariate statistical methods and human health risk considerations[J/OL]. Environmental Research, 2022[2023-04-25]. https://doi.org/10.1016/j.envres.2022.113028. |
5 | 周志芳, 王萍, 李雅冰, 等. 一种求解承压含水层水文地质参数的新配线法[J]. 河海大学学报(自然科学版), 2019, 47 (1): 7- 12. |
ZHOU Zhifang , WANG Ping , LI Yabing , et al. A new type curve method for estimating hydrogeological parameters of confined aquifers[J]. Journal of Hohai University (Natural Sciences), 2019, 47 (1): 7- 12. | |
6 | 张勇, 党承华, 东栋, 等. 水文地质参数智能优化计算[M]. 北京: 科学出版社, 2019: 120- 135. |
ZHANG Yong , DANG Chenghua , DONG Dong , et al. Intelligent optimization calculation of hydrogeological parameters[M]. Beijing: Science Press, 2019: 120- 135. | |
7 | 段国荣, 刘元会. 用差异演化-粒子群混合算法确定含水层参数[J]. 西安科技大学学报, 2019, 39 (3): 549- 554. |
DUAN Guorong , LIU Yuanhui . Differential evolution-particle swarm optimization mixed algorithm determine aquifer parameters[J]. Journal of Xi̓an University of Science and Technology, 2019, 39 (3): 549- 554. | |
8 | 刘淑惠, 肖长来, 梁秀娟. 基于线性、非线性规划的双辽市水文地质参数计算方法[J]. 水电能源科学, 2020, 38 (4): 72- 75. |
LIU Shuhui , XIAO Changlai , LIANG Xiujuan . A method for calculating hydrogeological parameters of Shuangliao city based on linear and nonlinear programming[J]. Water Resources and Power, 2020, 38 (4): 72- 75. | |
9 | 周念清, 张瑞城, 江思珉, 等. ES-MDA算法融合ERT数据联合反演地下水污染源与含水层参数[J]. 南水北调与水利科技(中英文), 2022, 20 (3): 478- 486. |
ZHOU Nianqing , ZHANG Ruicheng , JIANG Simin , et al. Joint inversion of contaminant source and aquifer parameters by assimilating ERT data with the ES-MDA algorithm[J]. South-to-North Water Transfers and Water Science & Technology, 2022, 20 (3): 478- 486. | |
10 |
ARORA S , SINGH S . Butterfly optimization algorithm: a novel approach for global optimization[J]. Soft Computing, 2019, 23 (3): 715- 734.
doi: 10.1007/s00500-018-3102-4 |
11 |
ARORA S , SINGH S . Node localization in wireless sensor networks using butterfly optimization algorithm[J]. Arabian Journal for Science and Engineering, 2017, 42 (8): 3325- 3335.
doi: 10.1007/s13369-017-2471-9 |
12 | DUBEY A K . Optimized hybrid learning for multi-disease prediction enabled by lion with butterfly optimization algorithm[J]. Sādhanā, 2021, 46 (2): 1- 27. |
13 |
TUBISHAT M , ALSWAITTI M , MIRJALILI S , et al. Dynamic butterfly optimization algorithm for feature selection[J]. IEEE Access, 2020, 8, 194303- 194314.
doi: 10.1109/ACCESS.2020.3033757 |
14 | ARORA S , SINGH S . An improved butterfly optimization algorithm with chaos[J]. Journal of Intelligent & Fuzzy Systems, 2017, 32 (1): 1079- 1088. |
15 | ARORA S , ANAND P . Learning automata-based butterfly optimization algorithm for engineering design problems[J]. International Journal of Computational Materials Science and Engineering, 2018, 7 (4): 1- 28. |
16 | 陈俊, 何庆. 基于余弦相似度的改进蝴蝶优化算法[J]. 计算机应用, 2021, 41 (9): 2668- 2677. |
CHEN Jun , HE Qing . Improved butterfly optimization algorithm based on cosine similarity[J]. Journal of Computer Applications, 2021, 41 (9): 2668- 2677. | |
17 | 张小萍, 谭欢. 具有动态方差高斯变异的蝴蝶优化算法[J]. 云南师范大学学报(自然科学版), 2022, 42 (3): 31- 36. |
ZHANG Xiaoping , TAN Huan . Butterfly optimization algorithm with dynamic variance Gaussian mutation[J]. Journal of Yunnan Normal University (Natural Sciences Edition), 2022, 42 (3): 31- 36. | |
18 | 邱淑伟, 吴亚敏, 柯昱琪, 等. 基于遍历搜索算法的水文地质参数优化求解[J]. 吉林大学学报(地球科学版), 2020, 50 (6): 1854- 1861. |
QIU Shuwei , WU Yamin , KE Yuqi , et al. Optimization of hydrogeological parameters based on ergodic search algorithm[J]. Journal of Jilin University (Earth Science Edition), 2020, 50 (6): 1854- 1861. | |
19 | CRAWFORD B , SOTO R , DE LA FUENTE MELLA H , et al. Binary fruit fly swarm algorithms for the set covering problem[J]. Computers, Materials and Continua, 2022, 71 (2): 4295- 4318. |
20 | TANYILDIZI E , DEMIR G . Golden sine algorithm: a novel math-inspired algorithm[J]. Advances in Electrical and Compu-ter Engineering, 2017, 17 (2): 71- 78. |
21 | GHASEMI M , AKBARI E , RAHIMNEJAD A , et al. Phasor particle swarm optimization: a simple and efficient variant of PSO[J]. Soft Computing, 2019, 23 (19): 9701- 9718. |
22 | 郝芃斐, 池瑞, 屈志坚, 等. 求解铁路物流配送中心选址问题的改进灰狼优化算法[J]. 计算机应用, 2021, 41 (10): 2905- 2911. |
HAO Pengfei , CHI Rui , QU Zhijian , et al. Improved grey wolf optimizer for location selection problem of railway logistics distribution center[J]. Journal of Computer Applications, 2021, 41 (10): 2905- 2911. | |
23 | 宁杰琼, 何庆. 混合策略改进的蝴蝶优化算法[J]. 计算机应用研究, 2021, 38 (6): 1718-1723, 1738. |
NING Jieqiong , HE Qing . Mixed strategy to improve butterfly optimization algorithm[J]. Application Research of Compu-ters, 2021, 38 (6): 1718-1723, 1738. |
[1] | 许侃,刘瑞鑫,林鸿飞,刘海峰,冯娇娇,李家平,林原,徐博. 基于异质网络嵌入的学术论文推荐方法[J]. 《山东大学学报(理学版)》, 2020, 55(11): 35-45. |
[2] | 张超,梁英,方浩汕. 支持隐私保护的社交网络信息推荐方法[J]. 《山东大学学报(理学版)》, 2020, 55(3): 9-18. |
[3] | 谢小杰,梁英,董祥祥. 社交网络用户敏感属性迭代识别方法[J]. 《山东大学学报(理学版)》, 2019, 54(3): 10-17, 27. |
[4] | 肖炜茗,王贵君. 基于Bernstein多项式的SISO三层前向神经网络的设计与逼近[J]. 山东大学学报(理学版), 2018, 53(9): 55-61. |
[5] | 索春凤, 王贵君. 最大交互数对非齐次T-S模糊系统的潜在影响[J]. 山东大学学报(理学版), 2015, 50(08): 14-19. |
[6] | 吴瑞海 董吉文 段琪庆. 变尺度混沌粒子群与小波的地基沉降预测应用[J]. J4, 2009, 44(11): 75-78. |
[7] | . 一种基于驾驶员学习过程的在线估计算法[J]. J4, 2009, 44(7): 83-88. |
[8] | 朱世伟,赛 英 . 基于主成分分析和粗径向基神经网络的财务预警模型研究[J]. J4, 2008, 43(11): 48-53 . |
|