您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

J4

• 论文 • 上一篇    下一篇

一类组合KdV-Burgers方程的数值解法

左进明,周运明   

  1. 山东理工大学数学与信息科学学院, 山东淄博255049
  • 收稿日期:2005-09-05 修回日期:1900-01-01 出版日期:2006-10-24 发布日期:2006-10-24
  • 通讯作者: 左进明

Computational methods for a class compound KdV-Burgers equation

ZUO Jin-ming,ZHOU Yun-ming   

  1. School of Mathematics and Information Science, Shandong University of Technology, Zibo 255049,Shandong, China
  • Received:2005-09-05 Revised:1900-01-01 Online:2006-10-24 Published:2006-10-24
  • Contact: ZUO Jin-ming

摘要: 采用一种线性隐格式解组合的KdVBurgers方程,这种方法是无条件稳定的.数值实验描述了单个线性波形运动的情形以及两个波形交互的情形,结果表明,这种格式使用简便,稳定性好,有很好的精度.

关键词: 数值方法, 组合KdVBurgers方程, 孤波 , 行波

Abstract: omputational methods based on a linearized implicit scheme are proposed for the solution of a class compound KdVBurgers equation. An important advantage to be gained from the linearized implicit methods is unconditionally stable. Numerical results portraying a single linesoliton solution and the interaction of twoline soliton are reported for the compound KdVBurgers equation.And they show that the method has good stability and accuracy.

Key words: solition waves , traveling waves, compound KdV-Burgers equation, computational methods

[1] 张秋华, 刘利斌, 周恺. 时滞非局部扩散Lotka-Volterra 竞争系统行波解的存在性[J]. 山东大学学报(理学版), 2015, 50(01): 90-94.
[2] 刘军. 带Markovian跳的随机时滞微分方程EM数值方法的收敛率[J]. J4, 2013, 48(3): 84-88.
[3] 郭尊光1,孔涛2*,李鹏飞2, 张微2. 基于最优实施边界的美式期权定价的数值方法[J]. J4, 2012, 47(3): 110-119.
[4] 吕海玲,刘希强,牛磊. 一类推广的[G′/G]展开方法及其在非线性数学物理方程中的应用[J]. J4, 2010, 45(4): 100-105.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!