您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2014, Vol. 49 ›› Issue (10): 62-65.doi: 10.6040/j.issn.1671-9352.0.2014.087

• 论文 • 上一篇    下一篇

转换开关不可靠的温储备可修系统可靠性分析

张权, 韩旸, 关宝玲, 李艳君   

  1. 齐齐哈尔大学理学院, 黑龙江 齐齐哈尔 161006
  • 收稿日期:2014-03-07 出版日期:2014-10-20 发布日期:2014-11-10
  • 作者简介:张权(1978-),男,博士研究生,讲师,研究方向为系统可靠性.E-mail:zhangquan122400@163.com
  • 基金资助:
    “十二五”国家科技支撑计划项目(2013BAK12B0803);黑龙江省教育厅科研项目(12541900)

Reliability analysis of a warm standby repairable system with unreliable transfer switch

ZHANG Quan, HAN Yang, GUAN Bao-ling, LI Yan-jun   

  1. College of Science, Qiqihaer University, Qiqihaer 161006, Heilongjiang, China
  • Received:2014-03-07 Online:2014-10-20 Published:2014-11-10

摘要: 研究了由两个不同元件和一个维修工组成的温储备系统,而且转换开关是不完全可靠的,即只要转换开关失效,系统立即失效。假设两个元件和转换开关的工作时间和维修时间均为指数分布,同时元件1比元件2具有优先维修权和使用权,它们均修复如新。由于转换开关担负着工作元件与备用元件之间的转换工作,因此它是系统的重要组成部分,在维修中具有优先权。在这些假设下,构造了掌控这个系统的马尔科夫过程,并且通过使用聚合随机过程和拉普拉斯变换,推导了一些重要的可靠性指标。最后通过数值例子陈述了模型的理论结果。

关键词: 温储备系统, 可靠性, 系统首次失效时间, 聚合马尔科夫过程

Abstract: A warm standby repairable system consisting of two different units and one repairmanis was studied.The switch is not completely reliable, as long as the switch failure, system failure immediately. It is assumed that the working time distributions and the repair time distributions of the two units and the transfer switch are both exponential, and unit 1 is given priority than unit 2 in use and repair. Both unit 1 and unit 2 are repaired “as good as new”. The switch taking change of the switching work between the working unit and the standby unit is an important part of the system and has the priority in repair. Under these assumptions, the Markov process governing the system is constructed and some important reliability indexes are derived by using the aggregated stochastic processes and the Laplace transform. Finally, a numerical example is given to illustrate the theoretical results of the model.

Key words: warm standby system, MTTFF, the aggregated Markov process, reliability

中图分类号: 

  • O213
[1] SRINIVASAN S K, SUBRAMANIAN R. Reliability analysis of a three unit warm standby redundant system with repair[J]. Annals of Operations Research, 2006, 143(1):227-235.
[2] LI Yuan. Reliability analysis for a k-out-of-n: G system with redundant dependency and repairmen having multiple vacations[J]. Applied Mathematics and Computation, 2012, 218(24):11959-11969.
[3] YU Haiyang, CHU Chengbin, CHATELET E, et al. Reliability optimization of a redundant system with failure dependencies[J]. Reliability Engineering and System Safety, 2007, 92(12):1627-1634.
[4] ZHANG Yuanlin, WANG Guanjun. A deteriorating cold standby repairable system with priority in use[J].European Journal of Operational Research, 2007, 183(1):278-295.
[5] HU Linmin, YUE Dequan, LI Jiandong. Probabilistic analysis of a series-parallel repairable system with three units and vacation[J]. Applied Mathematical Modelling, 2010, 34(10):2711-2721.
[6] LI Yuan, MENG Xianyun. Reliability analysis of a warm standby repairable system with priority in use[J]. Applied Mathematical Modelling, 2011, 35(9):4295-4303.
[7] David Colquhoun, Alan G Hawkes. On the stochastic properties of bursts of single Ion channel openings and of clusters of bursts[J]. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 1982, 300(1098):1-59.
[8] HAWKES A G,CUI Lirong, ZHENG Zhihua. Modelling the evolution of system reliability performance under alternative environments[J]. IIE Transactions, 2011, 43(11):761-772.
[9] WANG Liying, CUI Lirong. Aggregated semi-Markov repairable systems with history-dependent up and down states [J]. Mathematical and Computer Modeling, 2011, 53(6):883-895.
[1] 陈玲,门玉涛,王加江. 种植术与分根术联合治疗术后牙体可靠性分析[J]. 山东大学学报(理学版), 2016, 51(5): 6-10.
[2] 刘宝亮1, 2,温艳清1, 2. 修理工有多重休假的退化系统的可靠性[J]. 山东大学学报(理学版), 2014, 49(05): 45-49.
[3] 温艳清,孟献青,常克亮. 疲劳影响可忽略的聚合马尔可夫可修系统的可靠性分析[J]. J4, 2013, 48(8): 78-82.
[4] 梁小林,张妮,牛彩云. 可忽略疲劳影响的多状态马尔可夫可修系统[J]. J4, 2013, 48(3): 93-98.
[5] 刘洋,秦丰林,葛连升. 云计算测量研究综述[J]. J4, 2013, 48(11): 27-35.
[6] 温艳清,刘宝亮,罗芳,孟献青. 可忽略部分维修时间且工作时间服从PH分布的单部件可修系统的可靠性[J]. J4, 2013, 48(09): 46-50.
[7] 周建伟1,羊丹平2*. 二维区域Legendre-Galerkin谱方法的后验误差估计[J]. J4, 2011, 46(11): 122-126.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!