山东大学学报(理学版) ›› 2014, Vol. 49 ›› Issue (10): 66-71.doi: 10.6040/j.issn.1671-9352.0.2014.128
王萍莉1, 石东洋2
WANG Ping-li1, SHI Dong-yang2
摘要: 研究了Schrödinger方程双线性有限元逼近。利用导数转移技巧和该单元的高精度结果, 得到了H1模意义下O(h2)阶的超逼近性质。同时利用插值后处理技术, 给出了H1模意义下整体超收敛结果。近一步地, 通过构造一个新的外推格式, 导出了比传统有限元误差高两阶的O(h3)阶的外推解。
中图分类号:
[1] LU Tiao, CAI Wei, ZHANG Pingwen. Conservative local discontinuous Galerkin methods for time dependent Schrdinger equation[J]. International Journal of Numerical Analysis and Modeling, 2005, 2(1):75-84. [2] LIU Yang, LI Hong, WANG Jinfen. Error estimates of H1-Galerkin mixed finite element method for Schrdinger equation[J]. Applied Mathematics-A Journal of Chinese Universities, 2009, 24(1):83-89. [3] LIU Yang, LI Hong. H1-Galerkin mixed finite element method for the linear Schrdinger equation[J]. Advances in Mathematics, 2010, 39(4):429-442. [4] LIN Qun, LIU Xiaoqi. Global superconvergence estimates of finite element method for Schrdinger equation[J]. Journal of Computational Mathematics, 1998, 16(6):521-526. [5] 林群, 严宁宁. 高效有限元构造与分析[M]. 保定: 河北大学出版社, 1996. LIN Qun, YAN Ningning. The construction and analysis for high efficienency finite element method[M]. Baoding: Hebei University Press, 1996. [6] LIN Qun, ZHANG Shuhua. An immediate analysis for global superconvergence for integro-differential equations[J]. Applications of Mathematics, 1997, 42(1):1-21. [7] LIN Qun, ZHANG Shuhua, YAN Ningning. Asymptotic error expansion and defect correction for sobolev and viscoelasticity type equation[J]. Journal of Computattonal Mathematics, 1998, 16(1):51-62. [8] 樊明智, 王芬玲, 石东洋. 非线性Sine-Gordon方程的双线性元分析及外推[J]. 数学的实践与认识, 2012, 42(11):205-213. FAN Mingzhi, WANG Fenling, SHI Dongyang. The bilinear element analysis and extrapolation for nonlinear Sine-Gordon equation[J]. Mathematics in Practice and Theory, 2012, 42(11):205-213. [9] 史艳华, 石东洋. 非对称不定问题双线性元的超收敛及外推[J]. 应用数学, 2013, 26(1):220-227. SHI Yanhua, SHI Dongyang. Superconvergence and extrapolation of bilinear finite element method for nonsymmetric and indefinite problem[J]. Mathematica Applicata, 2013, 26(1):220-227. [10] SHI Dongyang, ZHU Huiqing. The superconvergence analysis of an anisotropic finite element[J]. Journal of Systems Science and Complexity, 2005, 18(4):478-478. [11] LIN Qun, LIN Jiafu. Extrapolation of the bilinear element approximation for the Poisson equation on anisotropic meshes[J]. Numerical Methods for Partial Differential Equations, 2007, 23(5):960-967. [12] YAN Ningning. Superconvergence analysis and a posteriori error estimation in finite element methods[M]. Beijing: Science Press, 2008. |
[1] | 黄爱玲,林帅. 局部量子Bernoulli噪声意义下的随机Schrödinger方程的有限维逼近[J]. 山东大学学报(理学版), 2017, 52(12): 67-71. |
[2] | 张厚超, 朱维钧, 王俊俊. 非线性四阶双曲方程一个低阶混合元方法的超收敛和外推[J]. 山东大学学报(理学版), 2015, 50(12): 35-46. |
[3] | 樊明智, 王芬玲, 石东洋. 广义神经传播方程最低阶新混合元格式的高精度分析[J]. 山东大学学报(理学版), 2015, 50(08): 78-89. |
[4] | 邓利华, 邓玉平, Louis W. Shapiro. 对称格路与恒等式[J]. 山东大学学报(理学版), 2015, 50(04): 82-89. |
[5] | 张亚东1,李新祥2,石东洋3. 强阻尼波动方程的非协调有限元超收敛分析[J]. 山东大学学报(理学版), 2014, 49(05): 28-35. |
[6] | 薛秋芳1,2,高兴宝1*,刘晓光1. H-矩阵基于外推GaussSeidel迭代法的几个等价条件[J]. J4, 2013, 48(4): 65-71. |
[7] | 史艳华1,石东洋2*. 伪双曲方程类Wilson非协调元逼近[J]. J4, 2013, 48(4): 77-84. |
[8] | 吴志勤1,石东伟2. 带弱奇异核非线性积分微分方程的收敛性分析[J]. J4, 2012, 47(8): 60-63. |
[9] | 周家全,孙应德,张永胜. Burgers方程的非协调特征有限元方法[J]. J4, 2012, 47(12): 103-108. |
[10] | 王芬玲1,石东伟2. 非线性双曲方程Hermite型矩形元的高精度分析[J]. J4, 2012, 47(10): 89-96. |
[11] | 牛裕琪1,王芬玲1,石东伟2. 非线性黏弹性方程双线性元解的高精度分析[J]. J4, 2011, 46(8): 31-37. |
[12] | 乔保民,梁洪亮. 一类非线性广义神经传播方程Adini元的超收敛分析[J]. J4, 2011, 46(8): 42-46. |
[13] | 罗平. 双重介质中地下水污染模型沿特征线外推的向后Euler-Galerkin 格式及交替方向预处理迭代解[J]. J4, 2011, 46(2): 70-77. |
[14] | 钱凌志1, 顾海波2. 高阶紧致格式结合外推技巧求解对流扩散方程[J]. J4, 2011, 46(12): 39-43. |
[15] | 陆瑶1,李德生2,杨洋1. 非线性SchrÖdinger方程的Fourier谱逼近[J]. J4, 2011, 46(1): 119-126. |
|