您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2014, Vol. 49 ›› Issue (10): 72-77.doi: 10.6040/j.issn.1671-9352.0.2013.548

• 论文 • 上一篇    下一篇

刻画可双完备化的区间值模糊拟度量空间

陆汉川, 李生刚   

  1. 陕西师范大学数学与信息科学学院, 陕西 西安 710062
  • 收稿日期:2013-11-03 出版日期:2014-10-20 发布日期:2014-11-10
  • 作者简介:陆汉川(1977-),男,博士研究生,讲师,研究方向为格上拓扑学与模糊数学.E-mail:luhanchuan2004@163.com
  • 基金资助:
    国家自然科学基金资助项目(11071151);陕西省自然科学基金资助项目(2010JM1005);中央高校基本科研业务费专项资金项目(14SZYB08)

Characterization of bicompletable interval-valued fuzzy quasi-metric spaces

LU Han-chuan, LI Sheng-gang   

  1. College of Mathematics and Information Science, Shaanxi Normal University, Xi'an 710062, Shanxi, China
  • Received:2013-11-03 Online:2014-10-20 Published:2014-11-10

摘要: 在拟度量的背景下推广了区间值模糊度量的概念,主要结果如下:(1)给出了区间值模糊拟度量空间等距同构的扩张定理;(2) 证明了每个区间值模糊拟度量空间有双完备化且它是唯一达到等距同构的; (3)得到了区间值模糊拟度量空间双完备化的构造方法和区间值模糊拟度量空间可双完备化的等价刻画。

关键词: 区间值模糊拟度量空间, 区间值模糊拟度量双完备化, 双柯西序列, 等距同构

Abstract: We generalize the notions of interval-valued fuzzy metric in the quasi-metric background. The main results of this paper are: (1) the isometric extension theorem of interval-valued fuzzy quasi-metric space is given; (2) it is proved that every interval-valued fuzzy quasi-metric space has bicompletion and is unique up to isometry; (3) a method to construct the interval-valued fuzzy quasi-metric space bicompletion is given, and a equivalent characterization of interval-value fuzzy quasi-metric spaces is obtained which can be bicompletable.

Key words: interval-valued fuzzy quasi-metric bicompletion, isometry, interval-valued fuzzy quasi-metric spaces, bi-Cauchy sequence

中图分类号: 

  • O189.13
[1] KRAMOSIL I, MICHLEK J. Fuzzy metric and statistical metric spaces[J]. Kybernetika, 1975, 11(5):336-344.
[2] GEORGE A, VEERAMANI P. On some results in fuzzy metric spaces[J]. Fuzzy Sets and Systems, 1994, 64(3):395-399.
[3] DENG Zike. Fuzzy pseudo metric spaces[J]. Journal of Mathematical Analysis and Applications, 1982, 86(1):74-95.
[4] ERCEG M A. Metric spaces in fuzzy set theory[J]. Journal of Mathematical Analysis and Applications, 1979, 69(1):205-230.
[5] KALEVA O, SEIKKALA S. On fuzzy metric spaces[J]. Fuzzy Sets and Systems, 1984, 12(3):215-229.
[6] GEORGE A, VEERAMANI P. On some results of analysis for fuzzy metric spaces[J]. Fuzzy Sets and Systems, 1997, 90(3):365-368.
[7] GEORGE A, VEERAMANI P. Some theorems in fuzzy metric spaces[J].Journal of Fuzzy Mathematics, 1995, 3:933-940.
[8] GREGORI V, ROMAGUERA S. Some properties of fuzzy metric spaces[J]. Fuzzy Sets and Systems, 2000, 115(3):485-489.
[9] ZADEH L A. The concept of a linguistic variable and its application to approximation reasoning I[J]. Information Sciences, 1975, 8(3):199-249.
[10] SHEN Yonghong, LI Haifeng, WANG Faxing. On interval-valued fuzzy metric spaces[J]. International Journal of Fuzzy Systems, 2012, 14(1):35-44.
[11] KVNZI H P A. Nonsymmetric distances and their associated topologies: about the origins of basic ideas in the area of asymmetric topology[M]// Handbook of the history of general topology. Dordrecht: Kluwer, 2001: 853-968.
[12] GREGORI V, ROMAGUERA S, VEERAMANI P. A note on intuitionistic fuzzy metric spaces[J]. Chaos, Solitons and Fractals, 2006, 28(4):902-905.
[13] MOHAMAD A. Fixed-point theorems in intuitionistic fuzzy metric spaces[J]. Chaos, Solitons and Fractals, 2007, 34(5):1689-1695.
[14] HONG D H, LEE S. Some algebraic properties and a distance measure for interval-valued fuzzy numbers[J]. Information Sciences, 2002, 148(1-4):1-10.
[15] WANG Guijun, LI Xiaoping. Correlation and information energy of interval-valued fuzzy numbers[J]. Fuzzy Sets and Systems, 1999, 103(1):169-175.
[16] FLETCHER P, LINDGREN W F. Quasi-Uniform spaces[M]. New York: Marcel Dekker, 1982.
[17] GREGORI V, ROMAGUERA S. Characterizing completable fuzzy metric spaces[J]. Fuzzy Sets and Systems, 2004, 144(3):411-420.
[1] 凌思兰,孟 晗,于 娜,孟广武 . L-闭包空间的SP-紧性[J]. J4, 2008, 43(1): 77-80 .
[2] 刘红平,孟广武 . L-拓扑空间中的F*-仿紧性[J]. J4, 2008, 43(3): 75-79 .
[3] 胡晓楠,孟广武 . 诱导L-smooth拓扑空间[J]. J4, 2008, 43(8): 64-68 .
[4] 韩红霞 . L-保序算子空间的相对ω-紧性[J]. J4, 2007, 42(7): 91-94 .
[5] 于 跃,孟广武 . 关于L-拓扑空间的超分离性的注[J]. J4, 2008, 43(2): 44-47 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!