山东大学学报(理学版) ›› 2014, Vol. 49 ›› Issue (10): 78-82.doi: 10.6040/j.issn.1671-9352.0.2014.105
李令强1,2, 李庆国1
LI Ling-qiang1,2, LI Qing-guo1
摘要: 公理化是研究粗集理论的重要方式。一般的公理系统都含有多个公理。在剩余格值环境下,给出了由格值模糊关系和一系列特殊的格值模糊关系生成的格值模糊下近似的唯一公理刻画。
中图分类号:
[1] PAWLAK Z. Rough set[J]. International Journal of Computer and Information Sciences, 1982, 11(5):341-356. [2] YAO Yiyu. Relational Interpretations of neighborhood operators and rough set approximations operators[J]. Information Science, 1998, 111:239-259. [3] 林国平,李进金,陈锦坤. 覆盖广义粗糙集的一般化方法[J]. 山东大学学报:理学版, 2012, 47(1):83-86. LIN Guoping, LI Jinjin, CHEN Jinkun. Generalization for covering generalized rough sets [J]. Journal of Shandong University: Natural Science, 2012, 47(1):83-86. [4] ZHU W. Relationship between generalized rough sets based on binary relation and covering[J]. Information Sciences, 2009, 179:210-225. [5] LIU Guilong. Generalized rough sets over fuzzy lattices[J]. Information Sciences, 2008, 178:1651-1662. [6] SHE Yanhong, WANG Guojun. An axiomatic approach of fuzzy rough sets based on residuated lattices[J]. Computers and Mathematics with Applications, 2009, 58:189-201. [7] HAO Jing, LI Qingguo. The relationship between L-fuzzy rough set and L-topology[J]. Fuzzy Sets and Systems, 2011, (178):74-83. [8] 李令强,金秋,孙守斌,等. 多值近似空间的上下近似诱导的拓扑结构[J].系统科学与数学, 2012,32(2):226-236. LI Lingqiang, JIN Qiu, SUN Shoubin, et al. The topological structures induced by upper and lower approximations of many-valued approximation spaces[J]. Journal of Systems Science and Mathematics Science, 2012, 32(2):226-236. [9] MA Zhenming, HU Baoqing. Topological and lattice structures of L-fuzzy rough sets determined by lower and upper sets[J]. Information Sciences, 2013, 218:194--204. [10] MI Jusheng, ZHANG Wenxiu. An axiomatic characterization of a fuzzy generalization of rough sets[J]. Information Sciences, 2004, 160:235-249. [11] LIU Guilong. Axiomatic systems for rough sets and fuzzy rough sets[J]. International Journal of Approximate Reasoning, 2008, 48:857-867. [12] LIU Guilong. Using one axiom to characterize rough set and fuzzy rough set approximations[J].Information Sciences, 2013, 223:285-296. [13] Hjek P. Metamathematics of fuzzy logic[M]. Dordrecht: Kluwer Academic Publishers, 1998. |
[1] | 马海成,李生刚. 有限拓扑的有向图表示[J]. 山东大学学报(理学版), 2017, 52(4): 100-104. |
[2] | 卢涛, 王习娟, 贺伟. Topos中选择公理的一个等价刻画[J]. 山东大学学报(理学版), 2015, 50(12): 54-57. |
[3] | 张海东1,贺艳平2. 广义区间值模糊粗糙集模型及其公理化特性[J]. J4, 2013, 48(09): 56-63. |
[4] | 杨伟萍1,林梦雷2. 直觉模糊信息系统中的信息粒度[J]. J4, 2012, 47(1): 87-92. |
[5] | 马周明1,2,李进金1,2*. 广义粗集公理化的一个注记[J]. J4, 2011, 46(8): 114-117. |
[6] | 张闵敏1,曹丽霞2. 中介公理集合论框架下的粗糙集[J]. J4, 2010, 45(9): 32-37. |
[7] | . 用网族的预收敛类刻画预拓扑空间的可数性公理[J]. J4, 2009, 44(6): 25-28. |
[8] | 于茸茸,李生刚. 具有分离性的预拓扑空间的范畴性质 [J]. J4, 2009, 44(4): 15-20 . |
[9] | 李 宁 . 不分明化拓扑空间中的拟R0分离公理的刻画[J]. J4, 2008, 43(4): 17-20 . |
[10] | 李成栋,魏 荣 . 双枝模糊集的内、外积及相似性度量[J]. J4, 2007, 13(2): 72-76 . |
|