您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2014, Vol. 49 ›› Issue (10): 78-82.doi: 10.6040/j.issn.1671-9352.0.2014.105

• 论文 • 上一篇    下一篇

格值模糊下近似算子的唯一公理刻画

李令强1,2, 李庆国1   

  1. 1. 湖南大学数学与计量经济学院, 湖南 长沙 410082;
    2. 聊城大学数学科学学院, 山东 聊城 252059
  • 收稿日期:2014-03-20 出版日期:2014-10-20 发布日期:2014-11-10
  • 通讯作者: 李庆国(1963-),男,博士,教授,博士生导师,研究方向为Domain信息系统.E-mail:liqingguoli@yahoo.com.cn E-mail:liqingguoli@yahoo.com.cn
  • 作者简介:李令强(1980-),男,博士,副教授,研究方向为拓扑与粗集.E-mail:lilingqiang0614@126.com
  • 基金资助:
    国家自然科学基金资助项目(11371130);湖南省科技计划项目资助(2012RS4029);山东省自然科学基金资助项目(ZR2013AQ011)

The characterizations of lattice-valued fuzzy lower approximation operators by a unique axiom

LI Ling-qiang1,2, LI Qing-guo1   

  1. 1. College of Mathematics and Econometrics, Hunan University, Changsha 410082, Hunan, China;
    2. Department of Mathematics Science, Liaocheng University, Liaocheng 252059, Shandong, China
  • Received:2014-03-20 Online:2014-10-20 Published:2014-11-10

摘要: 公理化是研究粗集理论的重要方式。一般的公理系统都含有多个公理。在剩余格值环境下,给出了由格值模糊关系和一系列特殊的格值模糊关系生成的格值模糊下近似的唯一公理刻画。

关键词: 格值模糊粗集, 公理, 格值模糊关系, 外积

Abstract: Axiomatic approaches are important in the study of rough set theory. Generally, the axiomatic systems of rough sets consist of more than one axiom. In this paper, under the residuated lattice-valued context, we use only one axiom to describe the lower approximation generated by the lattice-valued fuzzy relations and a series of special lattice-valued fuzzy relations.

Key words: lattice-valued fuzzy relations, lattice-valued fuzzy rough sets, out products, axioms

中图分类号: 

  • O159.1
[1] PAWLAK Z. Rough set[J]. International Journal of Computer and Information Sciences, 1982, 11(5):341-356.
[2] YAO Yiyu. Relational Interpretations of neighborhood operators and rough set approximations operators[J]. Information Science, 1998, 111:239-259.
[3] 林国平,李进金,陈锦坤. 覆盖广义粗糙集的一般化方法[J]. 山东大学学报:理学版, 2012, 47(1):83-86. LIN Guoping, LI Jinjin, CHEN Jinkun. Generalization for covering generalized rough sets [J]. Journal of Shandong University: Natural Science, 2012, 47(1):83-86.
[4] ZHU W. Relationship between generalized rough sets based on binary relation and covering[J]. Information Sciences, 2009, 179:210-225.
[5] LIU Guilong. Generalized rough sets over fuzzy lattices[J]. Information Sciences, 2008, 178:1651-1662.
[6] SHE Yanhong, WANG Guojun. An axiomatic approach of fuzzy rough sets based on residuated lattices[J]. Computers and Mathematics with Applications, 2009, 58:189-201.
[7] HAO Jing, LI Qingguo. The relationship between L-fuzzy rough set and L-topology[J]. Fuzzy Sets and Systems, 2011, (178):74-83.
[8] 李令强,金秋,孙守斌,等. 多值近似空间的上下近似诱导的拓扑结构[J].系统科学与数学, 2012,32(2):226-236. LI Lingqiang, JIN Qiu, SUN Shoubin, et al. The topological structures induced by upper and lower approximations of many-valued approximation spaces[J]. Journal of Systems Science and Mathematics Science, 2012, 32(2):226-236.
[9] MA Zhenming, HU Baoqing. Topological and lattice structures of L-fuzzy rough sets determined by lower and upper sets[J]. Information Sciences, 2013, 218:194--204.
[10] MI Jusheng, ZHANG Wenxiu. An axiomatic characterization of a fuzzy generalization of rough sets[J]. Information Sciences, 2004, 160:235-249.
[11] LIU Guilong. Axiomatic systems for rough sets and fuzzy rough sets[J]. International Journal of Approximate Reasoning, 2008, 48:857-867.
[12] LIU Guilong. Using one axiom to characterize rough set and fuzzy rough set approximations[J].Information Sciences, 2013, 223:285-296.
[13] Hjek P. Metamathematics of fuzzy logic[M]. Dordrecht: Kluwer Academic Publishers, 1998.
[1] 马海成,李生刚. 有限拓扑的有向图表示[J]. 山东大学学报(理学版), 2017, 52(4): 100-104.
[2] 卢涛, 王习娟, 贺伟. Topos中选择公理的一个等价刻画[J]. 山东大学学报(理学版), 2015, 50(12): 54-57.
[3] 张海东1,贺艳平2. 广义区间值模糊粗糙集模型及其公理化特性[J]. J4, 2013, 48(09): 56-63.
[4] 杨伟萍1,林梦雷2. 直觉模糊信息系统中的信息粒度[J]. J4, 2012, 47(1): 87-92.
[5] 马周明1,2,李进金1,2*. 广义粗集公理化的一个注记[J]. J4, 2011, 46(8): 114-117.
[6] 张闵敏1,曹丽霞2. 中介公理集合论框架下的粗糙集[J]. J4, 2010, 45(9): 32-37.
[7] . 用网族的预收敛类刻画预拓扑空间的可数性公理[J]. J4, 2009, 44(6): 25-28.
[8] 于茸茸,李生刚.

具有分离性的预拓扑空间的范畴性质

[J]. J4, 2009, 44(4): 15-20 .
[9] 李 宁 . 不分明化拓扑空间中的拟R0分离公理的刻画[J]. J4, 2008, 43(4): 17-20 .
[10] 李成栋,魏 荣 . 双枝模糊集的内、外积及相似性度量[J]. J4, 2007, 13(2): 72-76 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!