您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2014, Vol. 49 ›› Issue (10): 83-89.doi: 10.6040/j.issn.1671-9352.0.2013.648

• 论文 • 上一篇    下一篇

BL代数的区间值(∈,∈∨q)-模糊滤子理论

刘春辉1,2   

  1. 1. 赤峰学院教务处, 内蒙古 赤峰 024001;
    2. 赤峰学院数学与统计学院, 内蒙古 赤峰 024001
  • 收稿日期:2013-12-30 出版日期:2014-10-20 发布日期:2014-11-10
  • 作者简介:刘春辉(1982-),男,硕士,讲师,研究方向为数理逻辑、Domain理论与拓扑学.E-mail:chunhuiliu1983@163.com
  • 基金资助:
    国家自然科学基金资助项目(10371106, 60774073)

Theory of interval valued (∈,∈∨ q)-fuzzy filters in BL-algebras

LIU Chun-hui1,2   

  1. 1. Office of Teaching Affairs, Chifeng University, Chifeng 024001, Inner Mongolia, China;
    2. Department of Mathematics and Statistics, Chifeng University, Chifeng 024001, Inner Mongolia, China
  • Received:2013-12-30 Online:2014-10-20 Published:2014-11-10

摘要: 研究了BL代数的区间值(∈,∈∨q)-模糊滤子理论。在BL代数中引入区间值(∈,∈∨q)-模糊对合滤子和区间值(∈,∈∨q)-模糊结合滤子两类新概念, 获得了它们的几个等价刻画。 详细讨论了BL代数中各类区间值(∈,∈∨q))-模糊滤子间的关系, 证明了一个区间值模糊集为区间值(∈,∈∨q)-模糊布尔(关联)滤子当且仅当它既是区间值(∈,∈∨q)-模糊正关联滤子又是区间值(∈,∈∨q)-模糊对合滤子的结论。

关键词: &isin, q)-模糊滤子, 区间值(&isin, BL代数, 区间值(&isin, &or, &isin, &or, q)-模糊对合(结合)滤子

Abstract: The theory of interval valued (∈,∈∨ q)-fuzzy filters in BL-algebras is studied systematically. Firstly, two notions of interval valued (∈,∈∨ q)-fuzzy involution filters and interval valued (∈,∈∨ q)-fuzzy associative filters are introduced and some characterizations of them are obtained. Secondly, the relations among all kinds of interval valued (∈,∈∨ q)-fuzzy filters are discussed. It is proved that an interval valued fuzzy set is an interval valued (∈,∈∨ q)-fuzzy Boolean (implicative) filter if and only if it is both an interval valued (∈,∈∨ q)-fuzzy positive implicative and an interval valued (∈,∈∨ q)-fuzzy involution filter.

Key words: interval valued (∈,∈&or, interval valued (∈,∈&or, q)-fuzzy involution (associative) filter, BL-algebra, q)-fuzzy filter

中图分类号: 

  • O141.1
[1] WANG Guojun, ZHOU Hongjun. Introduction to mathematical logic and resolution principle[M]. Beijing: Science in China Press, 2009.
[2] HJEK P. Metamathematics of fuzzy logic[M]. Dordrecht: Kluwer Academic Publishers, 1998.
[3] TURUNEN E. BL-algebras of basic fuzzy logic[J]. Mathware and Soft Computing, 1999, 6(1):49-61.
[4] 周建仁, 吴洪博. WBR0-代数的正则性及与其它逻辑代数的关系[J]. 山东大学学报:理学版, 2012, 47(2):86-92. ZHOU Jianren, WU Hongbo. The regularness of WBR0-algebras and relationship with other logic algebras[J]. Journal of Shandong University:Natural Science, 2012, 47(2): 86-92.
[5] XU Yang, RUAN Da, QIN Keyun, et al. Lattice-valued logic[M]. Berlin: Springer, 2004.
[6] ZADEH L A. The concept of a linguistic variable and its application to approxinate reason[J]. Informtion and Control, 1975, 18:199-249.
[7] 刘春辉. 布尔代数的区间值(∈,∈∨q)-模糊子代数[J]. 山东大学学报:理学版, 2013, 48(10):94-98. LIU Chunhui. Interval valued (∈,∈∨ q)-fuzzy subalgebras of Boolean algebras[J]. Journal of Shandong University:Natural Science, 2013, 48(10):94-98.
[8] 刘春辉. 泛逻辑学中UB代数系统的广义模糊滤子[J]. 模糊系统与数学, 2011, 25(2):13-20. LIU Chunhui. Generalized fuzzy filters of UB algebras systems in universal logic[J]. Fuzzy Systerms and Mathematics, 2011, 25(2):13-20.
[9] XUE Zhan-ao, XIAO Yun-hua, LIU Wei-hua, et al. Intuitionistic fuzzy filter theory of BL-algebras[J]. Int J Mach Learn & Cyber, 2013, 4:659-669.
[10] ZHAN Jianming, XU Yang. Some types of generalized fuzzy filters of BL-algebras[J]. Computers and Mathenatics with Applications, 2008, 56:1604-1616.
[1] 刘春辉. 关于格蕴涵代数的(∈,∈∨q(λ, μ))-模糊LI-理想[J]. 山东大学学报(理学版), 2018, 53(2): 65-72.
[2] 刘春辉. BL代数的(,∨(-overq))-模糊滤子格[J]. 山东大学学报(理学版), 2017, 52(10): 104-110.
[3] 彭家寅. 关联模糊集理论的伪BL-代数的软滤子[J]. 山东大学学报(理学版), 2015, 50(08): 40-45.
[4] 寇海燕, 吴洪博. MTL代数的Wajsberg形式及其应用[J]. 山东大学学报(理学版), 2015, 50(02): 75-82.
[5] 陈桂英. 带有阈值的广义模糊双向联想记忆#br# 网络的稳定性分析[J]. 山东大学学报(理学版), 2014, 49(1): 80-85.
[6] 罗清君1,2, 王国俊1*. BL代数中极大滤子的拓扑性质[J]. J4, 2013, 48(12): 47-51.
[7] 刘春辉1,2. 布尔代数的区间值(∈,∈∨ q)模糊子代数[J]. J4, 2013, 48(10): 94-98.
[8] 潘玲, 廖祖华*,王秋菊,李云,嵇敏. 环的(∈,∈∨q)-直觉模糊理想[J]. J4, 2012, 47(8): 16-21.
[9] 刘春辉1,2. 滤子化软FI代数[J]. J4, 2012, 47(11): 94-98.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!