您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2014, Vol. 49 ›› Issue (10): 66-71.doi: 10.6040/j.issn.1671-9352.0.2014.128

• 论文 • 上一篇    下一篇

Schrödinger方程双线性元的 超收敛分析和外推

王萍莉1, 石东洋2   

  1. 1. 许昌学院数学与统计学院, 河南 许昌 461000;
    2. 郑州大学数学与统计学院, 河南 郑州 450001
  • 收稿日期:2014-03-31 出版日期:2014-10-20 发布日期:2014-11-10
  • 通讯作者: 石东洋(1961-),男,博士,教授,研究方向为有限元方法与应用.E-mail:shi_dy@zzu.edu.cn E-mail:shi_dy@zzu.edu.cn
  • 作者简介:王萍莉(1978-),女,硕士,讲师,研究方向为有限元方法与应用.E-mail:wangpingli8@163.com
  • 基金资助:
    国家自然科学基金资助项目(11101381, 11271340)

Superconvergence analysis and extrapolation of bilinear finite element for Schrödinger equation

WANG Ping-li1, SHI Dong-yang2   

  1. 1. School of Mathematics and Statistics, Xuchang University, Xuchang 461000, Henan, China;
    2. School of Mathematics and Statistics, Zhengzhou University, Zhengzhou 450001, Henan, China
  • Received:2014-03-31 Online:2014-10-20 Published:2014-11-10

摘要: 研究了Schrödinger方程双线性有限元逼近。利用导数转移技巧和该单元的高精度结果, 得到了H1模意义下O(h2)阶的超逼近性质。同时利用插值后处理技术, 给出了H1模意义下整体超收敛结果。近一步地, 通过构造一个新的外推格式, 导出了比传统有限元误差高两阶的O(h3)阶的外推解。

关键词: 外推, Schrö, dinger方程, 双线性元, 超收敛

Abstract: The bilinear finite element approximation is mainly discussed for Schrödinger equation. The superclose property with O(h2)order is obtained in H1-norm by use of the derivative transfering skill and the high accuracy results of the element. Also, the global superconvergence result is given in H1-norm through the interpolation post-processing technique. Furthermore, through constructing a new extrapolation scheme, the extrapolation solution with O(h3)order is deduced which is two order higher than the traditional error estimate.

Key words: dinger equation, bilinear finite element, Schrö, superconvergence, extrapolation

中图分类号: 

  • O212.6
[1] LU Tiao, CAI Wei, ZHANG Pingwen. Conservative local discontinuous Galerkin methods for time dependent Schrdinger equation[J]. International Journal of Numerical Analysis and Modeling, 2005, 2(1):75-84.
[2] LIU Yang, LI Hong, WANG Jinfen. Error estimates of H1-Galerkin mixed finite element method for Schrdinger equation[J]. Applied Mathematics-A Journal of Chinese Universities, 2009, 24(1):83-89.
[3] LIU Yang, LI Hong. H1-Galerkin mixed finite element method for the linear Schrdinger equation[J]. Advances in Mathematics, 2010, 39(4):429-442.
[4] LIN Qun, LIU Xiaoqi. Global superconvergence estimates of finite element method for Schrdinger equation[J]. Journal of Computational Mathematics, 1998, 16(6):521-526.
[5] 林群, 严宁宁. 高效有限元构造与分析[M]. 保定: 河北大学出版社, 1996. LIN Qun, YAN Ningning. The construction and analysis for high efficienency finite element method[M]. Baoding: Hebei University Press, 1996.
[6] LIN Qun, ZHANG Shuhua. An immediate analysis for global superconvergence for integro-differential equations[J]. Applications of Mathematics, 1997, 42(1):1-21.
[7] LIN Qun, ZHANG Shuhua, YAN Ningning. Asymptotic error expansion and defect correction for sobolev and viscoelasticity type equation[J]. Journal of Computattonal Mathematics, 1998, 16(1):51-62.
[8] 樊明智, 王芬玲, 石东洋. 非线性Sine-Gordon方程的双线性元分析及外推[J]. 数学的实践与认识, 2012, 42(11):205-213. FAN Mingzhi, WANG Fenling, SHI Dongyang. The bilinear element analysis and extrapolation for nonlinear Sine-Gordon equation[J]. Mathematics in Practice and Theory, 2012, 42(11):205-213.
[9] 史艳华, 石东洋. 非对称不定问题双线性元的超收敛及外推[J]. 应用数学, 2013, 26(1):220-227. SHI Yanhua, SHI Dongyang. Superconvergence and extrapolation of bilinear finite element method for nonsymmetric and indefinite problem[J]. Mathematica Applicata, 2013, 26(1):220-227.
[10] SHI Dongyang, ZHU Huiqing. The superconvergence analysis of an anisotropic finite element[J]. Journal of Systems Science and Complexity, 2005, 18(4):478-478.
[11] LIN Qun, LIN Jiafu. Extrapolation of the bilinear element approximation for the Poisson equation on anisotropic meshes[J]. Numerical Methods for Partial Differential Equations, 2007, 23(5):960-967.
[12] YAN Ningning. Superconvergence analysis and a posteriori error estimation in finite element methods[M]. Beijing: Science Press, 2008.
[1] 黄爱玲,林帅. 局部量子Bernoulli噪声意义下的随机Schrödinger方程的有限维逼近[J]. 山东大学学报(理学版), 2017, 52(12): 67-71.
[2] 张厚超, 朱维钧, 王俊俊. 非线性四阶双曲方程一个低阶混合元方法的超收敛和外推[J]. 山东大学学报(理学版), 2015, 50(12): 35-46.
[3] 樊明智, 王芬玲, 石东洋. 广义神经传播方程最低阶新混合元格式的高精度分析[J]. 山东大学学报(理学版), 2015, 50(08): 78-89.
[4] 邓利华, 邓玉平, Louis W. Shapiro. 对称格路与恒等式[J]. 山东大学学报(理学版), 2015, 50(04): 82-89.
[5] 张亚东1,李新祥2,石东洋3. 强阻尼波动方程的非协调有限元超收敛分析[J]. 山东大学学报(理学版), 2014, 49(05): 28-35.
[6] 薛秋芳1,2,高兴宝1*,刘晓光1. H-矩阵基于外推GaussSeidel迭代法的几个等价条件[J]. J4, 2013, 48(4): 65-71.
[7] 史艳华1,石东洋2*. 伪双曲方程类Wilson非协调元逼近[J]. J4, 2013, 48(4): 77-84.
[8] 吴志勤1,石东伟2. 带弱奇异核非线性积分微分方程的收敛性分析[J]. J4, 2012, 47(8): 60-63.
[9] 周家全,孙应德,张永胜. Burgers方程的非协调特征有限元方法[J]. J4, 2012, 47(12): 103-108.
[10] 王芬玲1,石东伟2. 非线性双曲方程Hermite型矩形元的高精度分析[J]. J4, 2012, 47(10): 89-96.
[11] 牛裕琪1,王芬玲1,石东伟2. 非线性黏弹性方程双线性元解的高精度分析[J]. J4, 2011, 46(8): 31-37.
[12] 乔保民,梁洪亮. 一类非线性广义神经传播方程Adini元的超收敛分析[J]. J4, 2011, 46(8): 42-46.
[13] 罗平. 双重介质中地下水污染模型沿特征线外推的向后Euler-Galerkin 格式及交替方向预处理迭代解[J]. J4, 2011, 46(2): 70-77.
[14] 钱凌志1, 顾海波2. 高阶紧致格式结合外推技巧求解对流扩散方程[J]. J4, 2011, 46(12): 39-43.
[15] 陆瑶1,李德生2,杨洋1. 非线性SchrÖdinger方程的Fourier谱逼近[J]. J4, 2011, 46(1): 119-126.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!