您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (02): 5-8.doi: 10.6040/j.issn.1671-9352.0.2014.137

• 论文 • 上一篇    下一篇

直积图邻点可区别E-全染色的一些结论

刘信生1, 邓卫东1, 王志强2   

  1. 1. 西北师范大学数学与统计学院, 甘肃 兰州 730070;
    2. 西北师范大学附属中学, 甘肃 兰州 730070
  • 收稿日期:2014-04-03 修回日期:2014-10-14 出版日期:2015-02-20 发布日期:2015-01-27
  • 作者简介:刘信生(1956-), 男, 硕士, 教授, 研究方向为图论及其应用. E-mail:liuxs@nwnu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(61163037, 61163054, 61363060)

Several conclusions of adjacent vertex distinguishing E-total coloring of the cartesian product graphs

LIU Xin-sheng1, DENG Wei-dong1, WANG Zhi-qiang2   

  1. 1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China;
    2. The High School Attached to Northwest Normal University, Lanzhou 730070, Gansu, China
  • Received:2014-04-03 Revised:2014-10-14 Online:2015-02-20 Published:2015-01-27

摘要: 运用分析法研究了直积图的邻点可区别E-全染色, 讨论了对于点色数至少为2以及邻点可区别E-全色数为3, 4的简单图的直积图的邻点可区别E-全色数, 并得出了一些相关推论.

关键词: 色数, 直积图, 邻点可区别E-全染色, 邻点可区别E-全色数

Abstract: By using of the analysis method, the adjacent vertex distinguishing E-total coloring of the cartesian product graphs are studied, and the adjacent vertex distinguishing E-total chromatic numbers for the cartesian products of the graphs with chromatic number at least 2 or the graphs with adjacent vertex distinguishing E-total chromatic numbers 3 or 4 are discussed, some relevant conclusions are also obtained.

Key words: the chromatic numbers, the cartesian product graph, the adjacent vertex distinguishing E-total coloring, the adjacent vertex distinguishing E-total chromatic number

中图分类号: 

  • O157.5
[1] ZHANG Zhongfu, LIU Linzhong, WANG Jianfang. Adjacent strong edge coloring of graphs[J]. Applied Mathematics Letter, 2002, 15:623-626.
[2] ZHANG Zhongfu, CHEN Xiangen, LI jingwen, et al. On adjacent-vertex-distinguishing total coloring of graphs[J]. Science in China, Ser. A Mathematics, 2005, 48(3):289-299.
[3] CHEN Xiangen, GAO Yuping, YAO Bing. Not necessarily proper total colourings which are adjacent vertex distinguishing[J]. International Journal of Computer Mathematics, 2013, 90(11):2298-2307.
[4] 李沐春, 张忠辅. 一类多重联图的邻点可区别E-全染色[J]. 纯粹数学与应用数学, 2010, 26(1):36-41. LI Muchun, ZHANG Zhongfu. Adjacent vertex-distinguishing E-total Coloring on a class of the multiple join Graphs[J]. Pure and Applied Mathematics, 2010, 26(1):36-41.
[5] 李沐春, 张忠辅. 若干笛卡尔积图的邻点可区别E-全染色[J]. 数学实践与认识, 2009,39(3):215-219. LI Muchun, ZHANG Zhongfu. Adjacent Vertex-distinguishing E-total Coloring on Product of Graphs of Some Graphs[J]. Mathematics in Practice and Theory, 2009, 39(3):215-219.
[6] BONDY J A, MURTY U S R. Graph Theory[M]. New York: Springer, 2008.
[7] WEST Douglas B. 图论导引[M]. 李建中,骆吉洲,译. 北京: 机械工业出版社, 2006.2.
[1] 陈祥恩,苗婷婷,王治文. 两条路的联图的点可区别I-全染色[J]. 山东大学学报(理学版), 2017, 52(4): 30-33.
[2] 何玉萍,王治文,陈祥恩. mC8的点可区别全染色[J]. 山东大学学报(理学版), 2017, 52(10): 24-30.
[3] 李世玲, 陈祥恩,王治文. 完全二部图K3,n(n≥18)的点可区别E-全染色[J]. 山东大学学报(理学版), 2016, 51(4): 68-71.
[4] 孟宪勇, 郭建华, 苏本堂. 3-正则Halin图的完备染色[J]. 山东大学学报(理学版), 2015, 50(12): 127-129.
[5] 孟献青. 一类平面图的强边染色[J]. 山东大学学报(理学版), 2015, 50(08): 10-13.
[6] 李敬文, 贾西贝, 董威, 李小慧, 闫光辉. 图的邻点可区别全染色算法[J]. 山东大学学报(理学版), 2015, 50(02): 14-21.
[7] 田双亮. 若干图的广义字典积的点可区别边染色[J]. 山东大学学报(理学版), 2014, 49(06): 31-34.
[8] 陈祥恩1,王治文2,赵飞虎1,魏甲静1,姚兵1. 若干强积图及合成图的邻点可区别一般边染色[J]. J4, 2013, 48(6): 18-22.
[9] 伍芳兰1,左连翠2*. 一类特殊笛卡尔积图的均匀染色[J]. J4, 2013, 48(4): 20-24.
[10] 薛玲1, 吴建良2*. 较少短圈的平面图的全色数[J]. J4, 2012, 47(9): 84-87.
[11] 田双亮. 若干字典积图的Mycielski图的点可区别边染色[J]. J4, 2012, 47(8): 7-10.
[12] 王艳丽,苗连英. 图的集合边色数[J]. J4, 2012, 47(6): 67-70.
[13] 刘信生,魏自盈. 图的邻点可区别星边色数的一个上界[J]. J4, 2012, 47(2): 52-55.
[14] 姚明1,姚兵2*,陈祥恩2. 立方Halin图的完备色数[J]. J4, 2012, 47(2): 65-70.
[15] 高毓平1, 王治文2,陈祥恩1*, 姚兵. 图K3,3∨Kt 的点可区别正常边染色1[J]. J4, 2012, 47(2): 60-64.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!