山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (02): 67-74.doi: 10.6040/j.issn.1671-9352.0.2014.078
陈一鸣, 柯小红, 韩小宁, 孙艳楠, 刘立卿
CHEN Yi-ming, KE Xiao-hong, HAN Xiao-ning, SUN Yan-nan, LIU Li-qing
摘要: 应用Legendre小波求解一类变系数分数阶微分方程组,利用Legendre小波积分算子矩阵将微分方程组转化成易于求解的代数方程组形式,进而对其进行求解.给出Legendre小波近似未知函数的收敛性分析,证明该方法的正确性,并给出三个数值算例进一步说明该方法是可行并有效的.
中图分类号:
[1] SUN H, ABDELWAHAB A, ONARAL B. Linear approximation of transfer function with a pole of fractional order[J]. IEEE Transactions on Automatic Control, 1984, 29:441-444. [2] KOELLER R C. Applications of fractional calculus to the theory of viscoelasticity[J]. Journal of Applied Mechanics, 1984, 51:299-307. [3] DEBNATH L. Recent applications of fractional calculus to science and engineering[J]. International Journal of Mathematics and Mathematical Sciences, 2003, 54:3413-3442. [4] GRIGORENKOL, GRIGORENKO E. Chaotic dynamics of the fractional Lorenz system[J]. Physical Review Letters, 2003, 91(3):034101. [5] YUSTE S B. Weighted average finite difference methods for fractional diffusion equations[J]. Computational Physics, 2006, 216:264-274. [6] MOMANI S M, ODIBAT Z. Numerical approach to differential equations of fractional order[J]. Journal of Computational and Applied Mathematics, 2007: 96-110. [7] LI Xinxiu. Numerical solution of fractional differential equations using cubic B-spline wavelet collocation method[J]. Communications in Nonlinear Science and Numerical Simulation, 2012, 17:3934-3946. [8] WU Guocheng, LEE E W M. Fractional variational iteration method and its application[J]. Physics Letters A, 2010, 374(25):2506-2509. [9] MOMANI S M, ODIBAT Z. Homotopy Perturbation method for nonlinear partial differential equations of fractional order[J]. Physic Letters A, 2007, 365:315-350. [10] REHMAN Mu, KHAN R A. The Legendre wavelet method for solving fractional differential equations[J]. Communications in Nonlinear Science and Numerical Simulation, 2011, 16:4163-4173. [11] LI Yuanlu. Solving a nonlinear fractional differential equation using Chebyshev wavelets[J]. Communications in Nonlinear Science and Numerical Simulation, 2010, 15:2284-2292. [12] MATIGNON D. Stability results of fractional differential equations with applications to control processing[C]. Proceeding of IMACS, IEEE-SMC, Lille,France, 1996: 963-968. [13] TAVAZOEI M S, HAERI M. A note on the stability of fractional order systems[J]. Mathematics and Computers in Simulation, 2009, 79(5):1566-1576. [14] ODIBAT Z. Analytic study on linear systems of fractional differential equations[J]. Computers and Mathematics with Applications, 2010, 59:1171-1183. [15] DAFTARDAR-GEJJI V, JAFARI H. Analysis of a system of nonautonomous fractional differential equations involving Caputo derivatives[J]. Journal of Mathematical Analysis and Applications, 2007, 328(2):1026-1033. [16] BONILLA B, RIVERO M, TRUJILLO J J. On systems of linear fractional differential equations with constant coefficients[J]. Applied Mathematics and Computation, 2007, 187(1):68-78. [17] 高芳,江卫华.分数阶微分方程组边值问题解的存在性[J].数学的实践与认识,2013,43(10):254-260. GAO Fang, JIANG Weihua. Existenceof solutions for boundary value problem of fractional differential equation system[J]. Mathematics in Practice and Theory, 2013, 43(10):254-260. |
[1] | 许俊莲1,2. 算子方程 AXB*-BX*A*=C的解[J]. J4, 2012, 47(4): 47-52. |
[2] | 杜贵春1,2,邵春芳1. 上三角算子矩阵值域的闭性[J]. J4, 2012, 47(4): 42-46. |
[3] | 段樱桃. 两个算子乘积的{1,3,4}逆序律[J]. J4, 2012, 47(4): 53-56. |
[4] | 耿万海,陈一鸣,刘玉风,汪晓娟. 应用Haar小波和算子矩阵求定积分的近似值[J]. J4, 2012, 47(4): 84-88. |
[5] | 许俊莲. 几个正交投影函数的特征值函数[J]. J4, 2011, 46(6): 70-74. |
[6] | 张建松1,牛海峰2. 多孔介质中可压缩混溶驱动问题的新型流线-扩散混合元方法[J]. J4, 2011, 46(12): 6-12. |
[7] | 高广花,王同科. 两点边值问题基于三次样条插值的高精度有限体积元方法[J]. J4, 2009, 44(2): 45-51. |
[8] | 郭 会,林 超 . 对流占优Sobolev方程的最小二乘特征混合有限元方法[J]. J4, 2008, 43(9): 45-50 . |
[9] | 郭 会 . 对流占优扩散方程的最小二乘特征混合有限元方法[J]. J4, 2008, 43(8): 6-10 . |
[10] | 张建松,羊丹平* . 混合边界条件下电热问题的数值分析[J]. J4, 2007, 42(8): 1-08 . |
[11] | 李 愿 . 2×2上三角算子矩阵的Weyl定理[J]. J4, 2007, 42(6): 69-73 . |
[12] | 张建松,羊丹平 . 多孔介质中可压缩驱动问题的全离散分裂正定混合元方法[J]. J4, 2006, 41(1): 1-10 . |
[13] | 张建松,羊丹平 . 多孔介质中可压缩驱动问题的全离散分裂正定混合元方法[J]. J4, 2006, 41(1): 1-10 . |
|