山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (02): 75-82.doi: 10.6040/j.issn.1671-9352.0.2014.342
寇海燕, 吴洪博
KOU Hai-yan, WU Hong-bo
摘要: MTL代数是一种重要的基础逻辑代数.本文采用Wajsberg方法,根据逻辑系统MTL中公理的形式,建立了NMTL代数的经典代数表示形式,进而证明了NMTL代数与MTL代数是同一代数结构,证明了满足条件 ∀x,y∈L, x→y=(y→0)→(x→0)的NMTL代数L是BR0代数.在此基础上证明了IMTL代数和BR0代数是同一代数结构,并给出BR0代数和BL代数的Wajsberg形式.
中图分类号:
[1] PAVELKA J. On fuzzy logic Ⅰ: Many-valued rules of inference, Ⅱ: Enriched residuated lattice and semantics of propositionalcalculi, III: Semantical completeness of some many-valued propositional calculi[J]. Zeitschrf Math Logik und Grundlagender Math, 1979, 25:45-52; 119-134; 447-464. [2] 徐扬. 格蕴涵代数[J]. 西南交通大学学报, 1993, 89(1):20-27. XU Yang. Lattice implication algebras[J]. Journal of Southwest Jiaotong University, 1993, 89(1):20-27. [3] XU Yang, RUAN Da, QIN Keyun, et al. Lattice-valued logic[M]. Berlin Heidelberg: Springer-Verlag, 2003. [4] HAJEK P. Metamathematics of fuzzy logic[M]. Dordrecht: Kluwer Academic Publishers, 1998. [5] 王国俊. 非经典数理逻辑与近似推理[M]. 2版.北京:科学出版社,2006. WANG Guojun. Non-classical mathematical logic and approximate reasoning[M]. 2nd.Beijing: Science Press, 2006. [6] 吴洪博. 基础R0代数与基础L*系统[J]. 数学进展, 2003, 32(5):565-576. WU Hongbo. Baisis R0-algebra and basis L* system[J]. Advances in Mathematics, 2003, 32(5):565-576. [7] ESTEVA F, GODO L. Monoidal t-norm based logic: towards a logic for left-continuous t-norms[J]. Fuzzy Sets and Systems, 2001, 124(3):271-288. [8] JUN Y B, XU, MA Y J. Fuzzy filters of MTL-algerbra[J]. Information Sciences, 2005, 175:120-138. [9] 裴道武. MTL-代数的特征定理[J]. 数学学报:中文版,2007,50(6):1201-1206. PEI Daowu. The characterizations of MTL-algebras[J]. Acta Mathematics Sinica: Chinese Series, 2007, 50(6):1201-1206. [10] 张小红,魏萍.DR0代数:由De Morgan 代数导出的正则剩余格[J].数学进展,2008,37(4):499-511. ZHANG Xiaohong, WEI Ping. DR0 algebras: a kind of regular residuated lattice via De Morgan algebras[J]. Advances in Mathematics, 2008, 37(4):499-511. [11] 张小红. 模糊逻辑及其代数分析[M]. 北京: 科学出版社,2008. ZHANG Xiaohong. Fuzzy logic and algebraic analysis[M]. Beijing: Science Press, 2008. [12] 刘敏,吴洪博.预线性剩余格与逻辑代数[J].工程数学学报,2008,25(2):199-203. LIU Min, WU Hongbo. Prelinearity residuated-lattice and logic algebras[J]. Chinese Journal of Engineering Mathematics, 2008, 25(2):199-203. [13] 王娜, 吴洪博. MTL-代数的演绎系统和余零化子及其相互关系[J]. 模糊系统与数学,2014, 28(1):9-14. WANG Na, WU Hongbo. The deductive system and co-annihilator of MTL-algebras and the relation between them[J]. Fuzzy Systems and Mathematics, 2014, 28(1):9-14. [14] Chang C C. Algebriac analysis of many-valued logics[J]. Trans Amer Math Soc, 1958, 88:467-490. [15] 王国俊.数理逻辑引论与归结原理[M].2版.北京:科学出版社,2006. WANG Guojun. An introduction to mathematical logic and resolution principle[M]. 2nd.Beijing: Science Press, 2006. [16] 吴望名. Fuzzy 蕴涵代数[J]. 模糊系统与数学, 1990,4(1):56-64. WU Wangming. Fuzzy implication algebras[J]. Fuzzy Systems and Mathematics, 1990, 4(1):56-64. [17] 刘练珍, 李开泰. FI代数同构于一族全序FI代数的直积的子代数的条件[J]. 纯粹数学与应用数学, 2004,20(1):63-67. LIU Lianzhen, LI Kaitai. The conditions of FI algebra to be a subalgebra of direct of a system of linearly ordered FI algebras[J]. Pure and Applied Mathematics, 2004, 20(1):63-67. [18] 刘春辉, 徐罗山. 格蕴涵代数的蕴涵表示定理[J]. 模糊系统与数学, 2010,24(4):26-32. LIU Chunhui, XU Luoshan. The representative theorems of lattice implication algebras by implication operator[J]. Fuzzy Systems and Mathematics, 2010, 24(4):26-32. [19] FONT J, RODRIGUEZ A J, TORRENS A. Wajsberg algebras[J]. Stochastica, 1984, 8:5-31. [20] 吴洪博,王昭海. BR0-代数的无序表示形式及WBR0-代数的性质[J].工程数学学报,2009, 26(3):456-460. WU Hongbo, WANG Zhaohai. The non-ordered Form of BR0-algeebras and properties of WBR0-algebras[J]. Chinese Journal of Engineering Mathematics, 2009, 26(3):456-460. [21] 高李红, 吴洪博. QBL-代数及其与BL-代数的等价性[J].吉林大学学报:理学版,2011,49(1):41-46. GAO Lihong, WU Hongbo. Quasi-BL-algebras and their equivalence with BL-algebras[J]. Journal of Jili University: Science Edition, 2011, 49(1):41-46. [22] 朱翔, 徐罗山. BL代数的等价刻画及更多性质[J]. 模糊系统与数学, 2011,25(1):13-18. ZHU Xiang, XU Luoshan. On characterizations and further properties of BL-algebras[J]. Fuzzy Systems and Mathematics, 2011, 25(1):13-18. |
[1] | 刘春辉. 可换BR0-代数在一般集合上的蕴涵表示形式[J]. 山东大学学报(理学版), 2018, 53(6): 86-94. |
[2] | 彭家寅. 剩余格上的落影模糊滤子[J]. 山东大学学报(理学版), 2018, 53(2): 52-64. |
[3] | 刘莉君. 剩余格上n-重正蕴涵滤子的特征及刻画[J]. 山东大学学报(理学版), 2017, 52(8): 48-52. |
[4] | 梁颖,崔艳丽,吴洪博. 基于BL系统的演绎系统集代数的剩余格属性[J]. 山东大学学报(理学版), 2017, 52(11): 65-70. |
[5] | 刘春辉. BL代数的(,∨(-overq))-模糊滤子格[J]. 山东大学学报(理学版), 2017, 52(10): 104-110. |
[6] | 乔希民,吴洪博. 区间集上非交换剩余格的〈,(-overQ)〉-fuzzy滤子及其特征刻画[J]. 山东大学学报(理学版), 2016, 51(2): 102-107. |
[7] | 周建仁, 吴洪博. IMTL逻辑系统的一种新扩张形式[J]. 山东大学学报(理学版), 2015, 50(12): 28-34. |
[8] | 刘春辉. 正则剩余格的模糊超⊙-理想[J]. 山东大学学报(理学版), 2014, 49(12): 87-94. |
[9] | 刘春辉. BL代数的区间值(∈,∈∨q)-模糊滤子理论[J]. 山东大学学报(理学版), 2014, 49(10): 83-89. |
[10] | 周建仁1,2,吴洪博2*. IMTL逻辑代数的一种新强化形式[J]. 山东大学学报(理学版), 2014, 49(04): 84-89. |
[11] | 罗清君1,2, 王国俊1*. BL代数中极大滤子的拓扑性质[J]. J4, 2013, 48(12): 47-51. |
[12] | 刘春辉1,2. 正则剩余格的素模糊⊙理想及其拓扑性质[J]. J4, 2013, 48(12): 52-56. |
[13] | 刘春辉1,2. Heyting代数的模糊滤子格[J]. J4, 2013, 48(12): 57-60. |
[14] | 刘春辉1,2. Fuzzy蕴涵代数的滤子理论刘春辉1,2[J]. J4, 2013, 48(09): 73-77. |
[15] | 周建仁,吴洪博*. WBR0-代数的正则性及与其他逻辑代数的关系[J]. J4, 2012, 47(2): 86-92. |
|