您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (02): 75-82.doi: 10.6040/j.issn.1671-9352.0.2014.342

• 论文 • 上一篇    下一篇

MTL代数的Wajsberg形式及其应用

寇海燕, 吴洪博   

  1. 陕西师范大学数学与信息科学学院, 陕西 西安 710062
  • 收稿日期:2014-07-25 修回日期:2014-11-20 出版日期:2015-02-20 发布日期:2015-01-27
  • 通讯作者: 吴洪博(1959-),男,博士,教授,研究方向为格上拓扑与非经典数理逻辑. E-mail:wuhb@snnu.edu.cn E-mail:wuhb@snnu.edu.cn
  • 作者简介:寇海燕(1989-),女,硕士研究生,研究方向为格上拓扑与非经典数理逻辑. E-mail:461316377@qq.com
  • 基金资助:
    国家自然科学基金资助项目(11171196)

Wajsberg's form of MTL algebras with applications

KOU Hai-yan, WU Hong-bo   

  1. School of Mathematics and Information Science, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
  • Received:2014-07-25 Revised:2014-11-20 Online:2015-02-20 Published:2015-01-27

摘要: MTL代数是一种重要的基础逻辑代数.本文采用Wajsberg方法,根据逻辑系统MTL中公理的形式,建立了NMTL代数的经典代数表示形式,进而证明了NMTL代数与MTL代数是同一代数结构,证明了满足条件 ∀x,y∈L, xy=(y→0)→(x→0)的NMTL代数L是BR0代数.在此基础上证明了IMTL代数和BR0代数是同一代数结构,并给出BR0代数和BL代数的Wajsberg形式.

关键词: NMTL代数, MTL代数, BL代数, 剩余格, BR0代数, 模糊逻辑

Abstract: MTL algebra is an important basic logic algebra. Firstly, the classical algebras forms of NMTL algebra is given by taking Wajsberg's method and some parts of axioms of MTL logic system, and it is proved that NMTL algebra and MTL algebra have identical structure. Secondly, it is proved that an NMTL algebras L satisfying the condition: ∀x,yL, x→y=(y→0)→(x→0) is BR0 algebra. Finally, it is proved that IMTL algebra and BR0 algebra have identical structure and the Wajsberg forms of BR0 algebra and BL algebra are given.

Key words: fuzzy logic, residuated lattice, NMTL algebra, BR0 algebra, BL algebra, MTL algebra

中图分类号: 

  • O141.1
[1] PAVELKA J. On fuzzy logic Ⅰ: Many-valued rules of inference, Ⅱ: Enriched residuated lattice and semantics of propositionalcalculi, III: Semantical completeness of some many-valued propositional calculi[J]. Zeitschrf Math Logik und Grundlagender Math, 1979, 25:45-52; 119-134; 447-464.
[2] 徐扬. 格蕴涵代数[J]. 西南交通大学学报, 1993, 89(1):20-27. XU Yang. Lattice implication algebras[J]. Journal of Southwest Jiaotong University, 1993, 89(1):20-27.
[3] XU Yang, RUAN Da, QIN Keyun, et al. Lattice-valued logic[M]. Berlin Heidelberg: Springer-Verlag, 2003.
[4] HAJEK P. Metamathematics of fuzzy logic[M]. Dordrecht: Kluwer Academic Publishers, 1998.
[5] 王国俊. 非经典数理逻辑与近似推理[M]. 2版.北京:科学出版社,2006. WANG Guojun. Non-classical mathematical logic and approximate reasoning[M]. 2nd.Beijing: Science Press, 2006.
[6] 吴洪博. 基础R0代数与基础L*系统[J]. 数学进展, 2003, 32(5):565-576. WU Hongbo. Baisis R0-algebra and basis L* system[J]. Advances in Mathematics, 2003, 32(5):565-576.
[7] ESTEVA F, GODO L. Monoidal t-norm based logic: towards a logic for left-continuous t-norms[J]. Fuzzy Sets and Systems, 2001, 124(3):271-288.
[8] JUN Y B, XU, MA Y J. Fuzzy filters of MTL-algerbra[J]. Information Sciences, 2005, 175:120-138.
[9] 裴道武. MTL-代数的特征定理[J]. 数学学报:中文版,2007,50(6):1201-1206. PEI Daowu. The characterizations of MTL-algebras[J]. Acta Mathematics Sinica: Chinese Series, 2007, 50(6):1201-1206.
[10] 张小红,魏萍.DR0代数:由De Morgan 代数导出的正则剩余格[J].数学进展,2008,37(4):499-511. ZHANG Xiaohong, WEI Ping. DR0 algebras: a kind of regular residuated lattice via De Morgan algebras[J]. Advances in Mathematics, 2008, 37(4):499-511.
[11] 张小红. 模糊逻辑及其代数分析[M]. 北京: 科学出版社,2008. ZHANG Xiaohong. Fuzzy logic and algebraic analysis[M]. Beijing: Science Press, 2008.
[12] 刘敏,吴洪博.预线性剩余格与逻辑代数[J].工程数学学报,2008,25(2):199-203. LIU Min, WU Hongbo. Prelinearity residuated-lattice and logic algebras[J]. Chinese Journal of Engineering Mathematics, 2008, 25(2):199-203.
[13] 王娜, 吴洪博. MTL-代数的演绎系统和余零化子及其相互关系[J]. 模糊系统与数学,2014, 28(1):9-14. WANG Na, WU Hongbo. The deductive system and co-annihilator of MTL-algebras and the relation between them[J]. Fuzzy Systems and Mathematics, 2014, 28(1):9-14.
[14] Chang C C. Algebriac analysis of many-valued logics[J]. Trans Amer Math Soc, 1958, 88:467-490.
[15] 王国俊.数理逻辑引论与归结原理[M].2版.北京:科学出版社,2006. WANG Guojun. An introduction to mathematical logic and resolution principle[M]. 2nd.Beijing: Science Press, 2006.
[16] 吴望名. Fuzzy 蕴涵代数[J]. 模糊系统与数学, 1990,4(1):56-64. WU Wangming. Fuzzy implication algebras[J]. Fuzzy Systems and Mathematics, 1990, 4(1):56-64.
[17] 刘练珍, 李开泰. FI代数同构于一族全序FI代数的直积的子代数的条件[J]. 纯粹数学与应用数学, 2004,20(1):63-67. LIU Lianzhen, LI Kaitai. The conditions of FI algebra to be a subalgebra of direct of a system of linearly ordered FI algebras[J]. Pure and Applied Mathematics, 2004, 20(1):63-67.
[18] 刘春辉, 徐罗山. 格蕴涵代数的蕴涵表示定理[J]. 模糊系统与数学, 2010,24(4):26-32. LIU Chunhui, XU Luoshan. The representative theorems of lattice implication algebras by implication operator[J]. Fuzzy Systems and Mathematics, 2010, 24(4):26-32.
[19] FONT J, RODRIGUEZ A J, TORRENS A. Wajsberg algebras[J]. Stochastica, 1984, 8:5-31.
[20] 吴洪博,王昭海. BR0-代数的无序表示形式及WBR0-代数的性质[J].工程数学学报,2009, 26(3):456-460. WU Hongbo, WANG Zhaohai. The non-ordered Form of BR0-algeebras and properties of WBR0-algebras[J]. Chinese Journal of Engineering Mathematics, 2009, 26(3):456-460.
[21] 高李红, 吴洪博. QBL-代数及其与BL-代数的等价性[J].吉林大学学报:理学版,2011,49(1):41-46. GAO Lihong, WU Hongbo. Quasi-BL-algebras and their equivalence with BL-algebras[J]. Journal of Jili University: Science Edition, 2011, 49(1):41-46.
[22] 朱翔, 徐罗山. BL代数的等价刻画及更多性质[J]. 模糊系统与数学, 2011,25(1):13-18. ZHU Xiang, XU Luoshan. On characterizations and further properties of BL-algebras[J]. Fuzzy Systems and Mathematics, 2011, 25(1):13-18.
[1] 刘春辉. 可换BR0-代数在一般集合上的蕴涵表示形式[J]. 山东大学学报(理学版), 2018, 53(6): 86-94.
[2] 彭家寅. 剩余格上的落影模糊滤子[J]. 山东大学学报(理学版), 2018, 53(2): 52-64.
[3] 刘莉君. 剩余格上n-重正蕴涵滤子的特征及刻画[J]. 山东大学学报(理学版), 2017, 52(8): 48-52.
[4] 梁颖,崔艳丽,吴洪博. 基于BL系统的演绎系统集代数的剩余格属性[J]. 山东大学学报(理学版), 2017, 52(11): 65-70.
[5] 刘春辉. BL代数的(,∨(-overq))-模糊滤子格[J]. 山东大学学报(理学版), 2017, 52(10): 104-110.
[6] 乔希民,吴洪博. 区间集上非交换剩余格的〈,(-overQ)〉-fuzzy滤子及其特征刻画[J]. 山东大学学报(理学版), 2016, 51(2): 102-107.
[7] 周建仁, 吴洪博. IMTL逻辑系统的一种新扩张形式[J]. 山东大学学报(理学版), 2015, 50(12): 28-34.
[8] 刘春辉. 正则剩余格的模糊超⊙-理想[J]. 山东大学学报(理学版), 2014, 49(12): 87-94.
[9] 刘春辉. BL代数的区间值(∈,∈∨q)-模糊滤子理论[J]. 山东大学学报(理学版), 2014, 49(10): 83-89.
[10] 周建仁1,2,吴洪博2*. IMTL逻辑代数的一种新强化形式[J]. 山东大学学报(理学版), 2014, 49(04): 84-89.
[11] 罗清君1,2, 王国俊1*. BL代数中极大滤子的拓扑性质[J]. J4, 2013, 48(12): 47-51.
[12] 刘春辉1,2. 正则剩余格的素模糊⊙理想及其拓扑性质[J]. J4, 2013, 48(12): 52-56.
[13] 刘春辉1,2. Heyting代数的模糊滤子格[J]. J4, 2013, 48(12): 57-60.
[14] 刘春辉1,2. Fuzzy蕴涵代数的滤子理论刘春辉1,2[J]. J4, 2013, 48(09): 73-77.
[15] 周建仁,吴洪博*. WBR0-代数的正则性及与其他逻辑代数的关系[J]. J4, 2012, 47(2): 86-92.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!