您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (02): 67-74.doi: 10.6040/j.issn.1671-9352.0.2014.078

• 论文 • 上一篇    下一篇

小波法求解分数阶微分方程组及其收敛性分析

陈一鸣, 柯小红, 韩小宁, 孙艳楠, 刘立卿   

  1. 燕山大学理学院, 河北 秦皇岛 066004
  • 收稿日期:2014-03-05 修回日期:2014-11-03 出版日期:2015-02-20 发布日期:2015-01-27
  • 通讯作者: 柯小红(1989-),女,硕士,研究方向为分数阶微积分. E-mail:kexiaohong1989@163.com E-mail:kexiaohong1989@163.com
  • 作者简介:陈一鸣(1957-),男,博士,教授,研究方向为分数阶微积分. E-mail:chenym@ysu.edu.cn
  • 基金资助:
    河北省自然科学基金资助项目(A2012203047)

Wavelets method for solving system of fractional differential equations and the convergence analysis

CHEN Yi-ming, KE Xiao-hong, HAN Xiao-ning, SUN Yan-nan, LIU Li-qing   

  1. College of Science, Yanshan University, Qinhuangdao 066004, Hebei, China
  • Received:2014-03-05 Revised:2014-11-03 Online:2015-02-20 Published:2015-01-27

摘要: 应用Legendre小波求解一类变系数分数阶微分方程组,利用Legendre小波积分算子矩阵将微分方程组转化成易于求解的代数方程组形式,进而对其进行求解.给出Legendre小波近似未知函数的收敛性分析,证明该方法的正确性,并给出三个数值算例进一步说明该方法是可行并有效的.

关键词: 分数阶微分方程组, 收敛性分析, 算子矩阵, 移位的Legendre多项式, Legendre小波

Abstract: The Legendre wavelets defined by the shifted Legendre polynomial is used to solve the numerical solution of the system of fractional differential equations with variable coefficient.The convergence analysis is presented to show that this method is correct for solving the fractional differential equations. Finally, three numerical examples are given to demonstrate the feasibility and efficiency of this method.

Key words: Legendre wavelets, operational matrix, convergence analysis, system of fractional differential equations, shifted Legendre polynomial

中图分类号: 

  • O241.8
[1] SUN H, ABDELWAHAB A, ONARAL B. Linear approximation of transfer function with a pole of fractional order[J]. IEEE Transactions on Automatic Control, 1984, 29:441-444.
[2] KOELLER R C. Applications of fractional calculus to the theory of viscoelasticity[J]. Journal of Applied Mechanics, 1984, 51:299-307.
[3] DEBNATH L. Recent applications of fractional calculus to science and engineering[J]. International Journal of Mathematics and Mathematical Sciences, 2003, 54:3413-3442.
[4] GRIGORENKOL, GRIGORENKO E. Chaotic dynamics of the fractional Lorenz system[J]. Physical Review Letters, 2003, 91(3):034101.
[5] YUSTE S B. Weighted average finite difference methods for fractional diffusion equations[J]. Computational Physics, 2006, 216:264-274.
[6] MOMANI S M, ODIBAT Z. Numerical approach to differential equations of fractional order[J]. Journal of Computational and Applied Mathematics, 2007: 96-110.
[7] LI Xinxiu. Numerical solution of fractional differential equations using cubic B-spline wavelet collocation method[J]. Communications in Nonlinear Science and Numerical Simulation, 2012, 17:3934-3946.
[8] WU Guocheng, LEE E W M. Fractional variational iteration method and its application[J]. Physics Letters A, 2010, 374(25):2506-2509.
[9] MOMANI S M, ODIBAT Z. Homotopy Perturbation method for nonlinear partial differential equations of fractional order[J]. Physic Letters A, 2007, 365:315-350.
[10] REHMAN Mu, KHAN R A. The Legendre wavelet method for solving fractional differential equations[J]. Communications in Nonlinear Science and Numerical Simulation, 2011, 16:4163-4173.
[11] LI Yuanlu. Solving a nonlinear fractional differential equation using Chebyshev wavelets[J]. Communications in Nonlinear Science and Numerical Simulation, 2010, 15:2284-2292.
[12] MATIGNON D. Stability results of fractional differential equations with applications to control processing[C]. Proceeding of IMACS, IEEE-SMC, Lille,France, 1996: 963-968.
[13] TAVAZOEI M S, HAERI M. A note on the stability of fractional order systems[J]. Mathematics and Computers in Simulation, 2009, 79(5):1566-1576.
[14] ODIBAT Z. Analytic study on linear systems of fractional differential equations[J]. Computers and Mathematics with Applications, 2010, 59:1171-1183.
[15] DAFTARDAR-GEJJI V, JAFARI H. Analysis of a system of nonautonomous fractional differential equations involving Caputo derivatives[J]. Journal of Mathematical Analysis and Applications, 2007, 328(2):1026-1033.
[16] BONILLA B, RIVERO M, TRUJILLO J J. On systems of linear fractional differential equations with constant coefficients[J]. Applied Mathematics and Computation, 2007, 187(1):68-78.
[17] 高芳,江卫华.分数阶微分方程组边值问题解的存在性[J].数学的实践与认识,2013,43(10):254-260. GAO Fang, JIANG Weihua. Existenceof solutions for boundary value problem of fractional differential equation system[J]. Mathematics in Practice and Theory, 2013, 43(10):254-260.
[1] 许俊莲1,2. 算子方程 AXB*-BX*A*=C的解[J]. J4, 2012, 47(4): 47-52.
[2] 杜贵春1,2,邵春芳1. 上三角算子矩阵值域的闭性[J]. J4, 2012, 47(4): 42-46.
[3] 段樱桃. 两个算子乘积的{1,3,4}逆序律[J]. J4, 2012, 47(4): 53-56.
[4] 耿万海,陈一鸣,刘玉风,汪晓娟. 应用Haar小波和算子矩阵求定积分的近似值[J]. J4, 2012, 47(4): 84-88.
[5] 许俊莲. 几个正交投影函数的特征值函数[J]. J4, 2011, 46(6): 70-74.
[6] 张建松1,牛海峰2. 多孔介质中可压缩混溶驱动问题的新型流线-扩散混合元方法[J]. J4, 2011, 46(12): 6-12.
[7] 高广花,王同科. 两点边值问题基于三次样条插值的高精度有限体积元方法[J]. J4, 2009, 44(2): 45-51.
[8] 郭 会,林 超 . 对流占优Sobolev方程的最小二乘特征混合有限元方法[J]. J4, 2008, 43(9): 45-50 .
[9] 郭 会 . 对流占优扩散方程的最小二乘特征混合有限元方法[J]. J4, 2008, 43(8): 6-10 .
[10] 张建松,羊丹平* . 混合边界条件下电热问题的数值分析[J]. J4, 2007, 42(8): 1-08 .
[11] 李 愿 . 2×2上三角算子矩阵的Weyl定理[J]. J4, 2007, 42(6): 69-73 .
[12] 张建松,羊丹平 . 多孔介质中可压缩驱动问题的全离散分裂正定混合元方法[J]. J4, 2006, 41(1): 1-10 .
[13] 张建松,羊丹平 . 多孔介质中可压缩驱动问题的全离散分裂正定混合元方法[J]. J4, 2006, 41(1): 1-10 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!