山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (03): 57-61.doi: 10.6040/j.issn.1671-9352.0.2014.083
罗李平, 罗振国, 曾云辉
LUO Li-ping, LUO Zhen-guo, ZENG Yun-hui
摘要: 研究了一类带脉冲效应的拟线性双曲系统(强)振动性质。利用新的处理拟线性扩散项的技巧及脉冲微分不等式的某些结果, 获得了该类系统在第二类边界条件下所有解(强)振动的若干充分判据, 结论充分地表明系统振动是由脉冲效应引起的。
中图分类号:
[1] 罗李平,罗振国,曾云辉.基于脉冲控制的非线性时滞双曲系统的振动分析[J].系统科学与数学,2013,33(9):1024-1032. LUO Liping, LUO Zhenguo, ZENG Yunhui. Oscillation results of third order half linear neutral differential equations[J]. J Sys Sci & Math Scis, 2013, 33(9):1024-1032. [2] LUO Liping, LIAO Jiding, GAO Zhenghui. Oscillation of systems of impulsive delay hyperbolic equations[J]. International Journal of Applied Mathematics and Applications, 2008, 1(2):147-154. [3] 罗李平.具非线性扩散系数的脉冲时滞双曲型方程组的振动性[J].自然科学进展,2008,18(3):341-344. LUO Liping. Oscillation of systems of impulsive delay hyperbolic equations with nonlinear diffusion coefficient[J]. Progress of Natural Science, 2008, 18(3):341-344. [4] 罗李平,欧阳自根.脉冲中立型时滞抛物偏微分方程组的振动准则[J].应用数学学报,2007,30(5):822-830. LUO Liping, OUYANG Zigen. Oscillation criteria of systems of impulsive neutral delay parabolic partial differential equations[J]. Acta Math Appl Sinica, 2007, 30(5):822-830. [5] LUO Liping, OUYANG Zigen. Oscillation theorem to systems of impulsive neutral delay parabolic partial differential equations[J]. Ann of Diff Eqs, 2007, 23(3):297-303. [6] LUO Liping, PENG Baiyu, YANG Liu. Oscillation of systems of impulsive delay parabolic equations about boundary value problems[J]. Ann of Diff Eqs, 2007, 23(4):470-476. [7] LUO Liping. Oscillation theorem of systems of quasilinear impulsive delay hyperbolic equations[J]. Northeast Math J, 2007, 23(3):255-262. [8] 罗李平,俞元洪.具拟线性扩散系数的脉冲中立型抛物系统的(强)振动性[J].振动与冲击,2011,30(8):183-186. LUO Liping, YU Yuanhong. (Strong) oscillation for systems of impulsive neutral parabolic equations with quasilinear diffusion coefficient[J]. Journal of Vibration and Shock, 2011, 30(8):193-196. [9] LI Weinian. On the forced oscillation of solutions for systems of impulsive parabolic differential equations with several delays[J]. J Comput Appl Math, 2005, 181(1):46-57. [10] LAKSHMIKANTHAM V, BAINOV D D, SIMEONOV P S. Theory of impulsive differential equations[M]. Singapore: World Scientific Publishing Co Pte Ltd, 1989. |
[1] | 罗李平,罗振国,曾云辉. 一类带阻尼项的拟线性双曲系统的(全)振动性问题[J]. 山东大学学报(理学版), 2016, 51(6): 73-77. |
|