您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (05): 68-73.doi: 10.6040/j.issn.1671-9352.0.2014.317

• 论文 • 上一篇    下一篇

分数阶微分方程边值问题非平凡解的存在性

马燕1,2, 张克玉2   

  1. 1. 齐鲁师范学院数学学院, 山东 济南 250013;
    2. 山东大学数学学院, 山东 济南 250100
  • 收稿日期:2014-07-08 出版日期:2015-05-20 发布日期:2015-05-29
  • 作者简介:马燕(1974-),女,硕士,副教授,研究方向为泛函分析.E-mail:qlmayan@126.com
  • 基金资助:
    国家自然科学基金资助项目(10971046);山东省自然科学基金资助项目(ZR2012AQ007);山东大学自主创新基金资助项目(2012TS020)

Existence of nontrivial solutions for boundary value problems of fractional differential equations

MA Yan1,2, ZHANG Ke-yu2   

  1. 1. Department of Mathematics, Qilu Normal University, Jinan 250013, Shandong, China;
    2. School of Mathematics, Shandong University, Jinan 250100, Shandong, China
  • Received:2014-07-08 Online:2015-05-20 Published:2015-05-29

摘要: 运用Leray-Schauder度理论, 在相关算子第一特征值条件下, 获得分数阶微分方程边值问题

非平凡解的存在性, 其中α∈(2,3]是一实数, D0+αα阶Riemann-Liouville 分数阶导数。

关键词: 非平凡解, Leray-Schauder度, 分数阶边值问题

Abstract: By applying the theory of Leray-Schauder degree, the existence of nontrivial solutions for the boundary value problems of fractional differential equations 

is considered under some conditions concerning the first eigenvalue corresponding to the relevant linear operator.Here α∈(2,3]is a real number, D0+α is the standard Riemann-Liouville fractional derivative of order α.

Key words: fractional boundary value problem, Leray-Schauder degree, nontrivial solution

中图分类号: 

  • O175.8
[1] 郑祖庥.分数微分方程的发展和应用[J].徐州师范大学学报, 2008, 26(2):1-10. ZHENG Maxiu. Development and applications of fractional differential equations[J]. Jounal of Xuzhou Nomal University, 2008, 26(2): 1-10.
[2] SAMKO S, KILBAS A, MARICHEV O. Fractional integrals and derivatives: theory and applications,gordon and breach[M]. London: Taylor and Francis Ltd, 1993.
[3] PODLUBNY I. Fractional differential equations, in: mathematics in science and engineering[M]. New York: Academic Press, 1999.
[4] BAI Z. On positive solutions of a nonlocal fractional boundary value problem[J]. Nonlinear Analysis, 2010, 72(2):916-924.
[5] XU J, YANG Z. Multiple positive solutions of a singular fractional boundary value problem[J]. Applied Mathematics E-Note, 2010, 10:259-267.
[6] XU J, WEI Z, DONG W. Uniqueness of positive solutions for a class of fractional boundary value problem[J]. Appl Math Lett, 2012, 25(3):590-593.
[7] 许晓婕, 胡卫敏. 一个新的分数阶微分方程边值问题正解的存在性结果[J]. 系统科学与数学, 2012, 32(5):580-590. XU Xiaojie, HU Weimin. The existence results of positive solutions of a new fractional differential equation of boundary value problems[J]. System Science and Mathematics, 2012, 32(5):580-590.
[8] EL-SHAHED M. Positive solutions for boundary value problems of nonlinear fractional differential equation[J]. Abs Appl Anal, 2007, 2007(1):1-8.
[9] YANG X, WEI Z, DONG W. Existence of positive solutions for the boundary value problem of nonlinear fractional differential equations[J]. Commun Nonlinear Sci Numer Simulat, 2012, 17(1):85-92.
[10] LI Q, SU H, WEI Z. Existence and uniqueness result for a class of sequential fractional differential equations[J]. J Appl Math Comput, 2012, 38(1/2):641-652.
[11] YUAN C. Two positive solutions for (n-1,1)-type semipositone integral boundary value problems for coupled systems of nonlinear fractional differential equations[J]. Commun Nonlinear Sci Numer Simulat, 2012, 17(2):930-942.
[12] FENG W, SUN S, HAN Z, et al.Existence of solutions for a singular system of nonlinear fractional differential equations[J]. Comput Math Appl, 2011, 62(3):1370-1378.
[13] XU Jiafa, WEI Zhongli, DING Youzheng. Positive solutions for a boundary-value problem with Riemann-Liouville fractional derivative[J]. Lithuanian Mathematical Journal, 2012, 52(4):462-476.
[14] NUSSBAUM R. Eigenvectors of nonlinear positive operators and the linear Krein-Rutman theorem in fixed point theory[J]. Lecture Notes in Math, 1981, 886:309-330.
[15] GUO D, LAKSHMIKANTHAM V. Nonlinear problems in abstract cones[M]. Orlando: Academic Press, 1988.
[1] 李晓燕,徐嫚. 二阶脉冲微分方程Dirichlet问题非平凡解的存在性及多解性[J]. 山东大学学报(理学版), 2016, 51(12): 29-35.
[2] 伍芸1,2, 韩亚蝶1. 一类临界位势非线性椭圆型方程非平凡解的存在性[J]. J4, 2013, 48(4): 91-94.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!