山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (08): 46-50.doi: 10.6040/j.issn.1671-9352.0.2014.383
陈利1, 杨蕊1, 马占友2
CHEN Li1, YANG Rui1, MA Zhan-you2
摘要: 利用仿真实验方法研究多重休假的带启动-关闭期的Geom/G/1排队系统,统计出系统的稳态队长及顾客的平均等待时间随系统参数的变化趋势,与已知文献的理论分析结果进行对比,发现这两种方法得出的性能指标的变化趋势完全吻合,从而说明仿真实验方法的有效性.
中图分类号:
[1] 林闯. 计算机网络和计算机系统的性能评价[M]. 北京: 清华大学出版社, 2001. LIN Chuang. Performance evaluation of computer network and computer system [M]. Beijing: Tsinghua University Press, 2001. [2] 吴旭光, 杨惠珍, 王新民. 计算机仿真技术 [M]. 北京: 化学工业出版社, 2005. WU Xuguang, YANG Huizhen, WANG Xinmin. The computer simulation technology [M]. Beijing: Chemical Industry Press, 2005. [3] GAO Shan, WANG Jinting, ZHANG Deran. Discrete-time GIX/Geo/1/N queue with negative customers and multiple working vacations [J]. Journal of the Korean Statistical Society, 2013, 42(4):515-528. [4] WU Jinbiao, WANG Jianxin, LIU Zaiming. A discrete-time Geo/G/1 retrial queue with preferred and impatient customers [J]. Applied Mathematical Modelling, 2013, 37(4): 2552-2561. [5] LI Jihong. Analysis of the discrete-time Geo/G/1 working vacation queue and its application to network scheduling [J]. Computers & Industrial Engineering, 2013, 65(4): 594-604. [6] Lee Se Won, Lee Ho Woo, Baek Jung Woo. Analysis of discrete-time MAP/G/1 queue under workload control [J]. Performance Evaluation, 2012, 69(2): 71-85. [7] 张雷, 王玉, 吕胜利,等. 带有负顾客的M/M/m/k-m优先权排队系统分析 [J]. 山东大学学报:理学版, 2011, 46(11): 105-111. ZHANG Lei, WANG Yu, L Shengli. et al. Analysis of the M/M/m/k-m preemptive priority queuing system with negative customers [J]. Journal of Shandong University: Natural Science, 2011, 46(11):105-111. [8] 马占友,徐秀丽,田乃硕. 多重休假的带启动—关闭期的Geom/G/1排队 [J]. 运筹与管理, 2004, 13(5): 21-25. MA Zhanyou, XU Xiuli, TIAN Naishuo. The Geom/G/1 queue with multiple vacation and server set-up/close times [J]. Operations Research and Management Science, 2004, 13(5): 21-25. [9] Takagi Hideaki. Queueing analysis (Volume 3): discrete-time systems [M]. North-Holland Publishing Company, 1993. [10] 田乃硕. 休假随机服务系统[M]. 北京: 北京大学出版社, 2001. TIAN Naishuo. Stochastic service system with vacation[M]. Beijing: Peking University Press, 2001. [11] 马占友,刘洺辛,田乃硕. 空竭服务Geom/G/1休假模型 [J]. 运筹学学报, 2004, 8(3): 71-77. MA Zhanyou, LIU Mingxin, TIAN Naishuo. Geom/G/1 vacation queue with exhaustive service[J]. Operations Research Transactions, 2004, 8(3):71-77. [12] 张丽媛,马占友. 基于仿真实验的休假Geom/G/1排队的性能分析[J]. 数学的实践与认识, 2010, 40(6):151-154. ZHANG Liyuan, MA Zhanyou. Performance analysis of Geom/G/1 with vacation based on simulation experiment[J]. Mathematics in Practice and Theory, 2010, 40(6):151-154. |
[1] | 曹学云,徐秀丽,李沛. 带启动期的M[x]/M/1/SWV排队系统[J]. J4, 2011, 46(7): 116-123. |
[2] | 韦才敏,邹宗保. 带有广义随机工作休假的Geom/Geom/1排队系统[J]. J4, 2011, 46(6): 103-109. |
[3] | 赵媛,田乃硕,原小娟,靳晓青,宁小虎. 具有二次可选服务的多重休假Geom/G/1离散排队[J]. J4, 2011, 46(1): 104-108. |
[4] | 田瑞玲,岳德权,胡林敏. 带有止步和状态相依的M/Hk/1多重休假排队[J]. J4, 2010, 45(5): 89-94. |
[5] | 孙贵勇 朱翼隽. N策略、负顾客、反馈Geo/Geo/1多重休假排队模型[J]. J4, 2010, 45(2): 37-43. |
[6] | 樊剑武 赵晓华 田乃硕 贠小青. 带有负顾客的M/M/1/N单重工作休假排队系统[J]. J4, 2009, 44(8): 68-73. |
[7] | 付永红1 ,余眝妙2 ,唐应辉3 ,李才良4 . 两水平修理策略下的M/(Mr,Gs)/1/N/N机器维修模型稳态概率算法与性能分析[J]. J4, 2009, 44(4): 72-78 . |
[8] | 岳德权,马金旺,马明建,余君 . 具有备用服务员的可修排队系统分析[J]. J4, 2009, 44(3): 39-44 . |
[9] | 张 峰 . 具有优先权和可选择服务的可修MX11,MX22/G(M/M)/1排队系统[J]. J4, 2008, 43(5): 75-81 . |
|