您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (12): 87-94.doi: 10.6040/j.issn.1671-9352.0.2015.510

• • 上一篇    下一篇

连续时间正系统的静态输出反馈鲁棒H控制

徐言超   

  1. 烟台职业学院, 山东 烟台 264670
  • 收稿日期:2015-10-30 出版日期:2016-12-20 发布日期:2016-12-20
  • 作者简介:徐言超(1970— ),男,硕士,副教授,研究方向为计算机技术. E-mail:xuyanch@163.com

Static output feedback robust H control for continuous-time positive systems

XU Yan-chao   

  1. Yantai Vocational College, Yantai 264670, Shandong, China
  • Received:2015-10-30 Online:2016-12-20 Published:2016-12-20

摘要: 利用有界实引理和线性矩阵不等式技术,得到了连续时间正系统静态输出反馈H控制问题可解的一个充要条件在此基础上给出了连续时间正系统存在静态输出反馈鲁棒H控制器的一个充分条件,所得条件均由带有矩阵等式约束的线性矩阵不等式给出。H控制器增益矩阵可利用锥补线性化技巧来求解。最后,作为静态输出反馈的一种特殊情形,得到了状态反馈控制器存在的一个充分条件,并通过数值仿真验证了结论的正确性。

关键词: 线性矩阵不等式, 静态输出反馈, 锥补线性化, 鲁棒H无穷控制, 正系统

Abstract: A necessary and sufficient condition of static output feedback H control for continuous-time positive systems was obtained via bounded real lemma and linear matrix inequality. Based on the above condition, a sufficient condition of static output feedback robust H control for continuous-time positive systems was given. The conditions were established in terms of linear matrix inequalities and a matrix equality constraint. Furthermore, the desired H controller gain matrix could be determined via cone complementarity linearization techniques. Final, a state controller asspecial case of static output feedback ones was given and a numerical example was provided to illustrate the validity of the results.

Key words: positive systems, static output feedback, cone complementarity linearization, linear matrix inequality, robust H control

中图分类号: 

  • TP273
[1] BERMAN A, PLEMMONS R J. Nonnegative matrices in the mathematical sciences[M]. Philadelphia, PA: SIAM, 1994.
[2] DE SANTIS A, FARINA L. Identification of positive linear systems with Poisson output transformation[J]. Automatica, 2002, 38(5):861-868.
[3] FARINA L, RINALDI S. Positive linear systems: theory and its applications[M]. New York: Wiley, 2000.
[4] GURVITS L, SHORTEN R, MASON O. On the stability of switched positive linear systems[J]. IEEE Transactions on Automatic Control, 2007, 52(6):1099-1103.
[5] BENVENUTI L, FARINA L. A tutorial on the positive realization problem[J]. IEEE Transactions on Automatic Control, 2004, 49(5):651-664.
[6] NGOC P. Strong stability radii of positive linear time-delay systems[J]. International Journal of Robust and Nonlinear Control, 2005, 15(10):459-472.
[7] BACK J, ASTOLFI A. Design of positive linear observers for positive linear systems via coordinate transformations and positive realizations[J]. SIAM Journal on Control and Optimization, 2008, 47(1):345-373.
[8] 宋世君,冯俊娥,孟敏.受控正系统的弹性静态输出反馈鲁棒H控制[J].控制理论与应用,2014,31(5):671-676. SONG Shijun, FENG June, MENG Min.Robust resilient static output feedback H control for positive systems[J]. Control Theory & Applications, 2014, 31(5):671-676.
[9] FENG J, LAM J, SHU Z, et al. Internal positivity preserved model reduction[J]. International Journal of Control, 2010, 83(3):574-585.
[10] CHEN X, LAM J, LAM H. Positive filtering for positive Takagi-Sugeno fuzzy systems under l1 performance[J]. Information Sciences, 2015, 299(1):32-41.
[11] SHEN J, LAM J. l/L-gain analysis for positive linear systems with unbounded time-varying delays[J]. IEEE Transactions on Automatic Control, 2015, 60(3):857-862.
[12] 李振波,朱淑倩. 受控正时滞系统的弹性静态输出反馈镇定[J]. 山东大学学报(工学版),2011,41(3):46-52. LI Zhenbo, ZHU Shuqian. Resilient static output feedback stabilization for controlled positive time-delay systems[J]. Journal of Shandong University(Engineering Science), 2011, 41(3):46-52.
[13] MASON O, SHORTEN R. On linear copositiveLyapunov functions and the stability of switched positive linear systems[J]. IEEE Transactions on Automatic Control, 2007, 52(7):1346-1349.
[14] RAMI M A. Solvability of static output-feedback stabilization for LTI positive systems[J]. Systems & Control Letters, 2011, 60(9):704-708.
[15] YOSHIDA H, TANAKA T. Positive controllability test for continuous-time linear systems[J]. IEEE Transactions on Automatic Control, 2007, 52(9):1685-1689.
[16] FENG J, LAM J, LI P, et al. Decay rate constrained stabilization of positive systems using static output feedback[J]. International Journal of Robust and Nonlinear Control, 2011, 21(1):44-54.
[17] LIAN J, LIU J, ZHUANG Y. Mean stability of positive Markov jump linear systems with homogeneous and switching transition probabilities[J]. IEEE Transactions on Circuits Systems II, 2015, 62(8):801-805.
[18] ZHU S, HAN Q, ZHANG C. Investigating the effects of time-delays on stochastic stability and designing l1-gain controllers for positive discrete-time Markov jump linear systems with time-delay[J]. Information Sciences, 2016, 355(10):265-281.
[19] GAHINET P, APKARIAN P. A linear matrix inequality approach to H control[J]. International Journal of Robust and Nonlinear Control, 1994, 4:421-448.
[20] 张卫, 鞠培军.广义变时滞区间系统的鲁棒H弹性控制[J]. 山东大学学报(理学版),2008,43(4):58-61. ZHANG Wei, JU Peijun. Robust resilient H control for interval singular systems with time-varying delays[J]. Journal of Shandong University(Nature Science), 2008, 43(4):58-61.
[21] 孙林, 郑煜, 姚娟. 不确定离散奇异系统的鲁棒非脆弱H状态反馈控制[J].山东大学学报(理学版),2011, 46(1):35-41. SUN Lin, ZHENG Yu, YAO Juan. Robust non-fragile H state feedback control for uncertainty discrete singular systems[J]. Journal of Shandong University(Nature Science), 2011, 46(1):35-41.
[22] YANG Guanghong, WANG Jianliang. Non-fragile H control for linear systems with multiplicative controller gain variations[J]. Automatica, 2001, 37(5):727-737.
[23] 鲁仁全, 苏宏业,薛安克, 等. 奇异系统的鲁棒控制理论[M]. 北京:科学出版社,2008.
[24] LI P, LAM J, SHU Z. H positive filtering for positive linear discrete-time systems: an augmentation approach[J]. IEEE Transactions on Automatic Control, 2010, 55(10):2337-2342.
[25] TANAKA T, LANGBORT C. The bounded real lemma for internally positive systems and H structured static state feedback[J]. IEEE Transactions on Automatic Control, 2011, 56(9):2218-2223.
[26] EI GHAOUI L, OUSTRY F, AITRAMI M. A cone complementarity linearization algorithm for static output-feedback and related problems[J]. IEEE Transactions on Automatic Control, 1997, 42(8):1171-1176.
[1] 陈乃训1,马树萍2*. 一类非线性离散广义马尔可夫跳跃系统的静态输出反馈镇定[J]. J4, 2013, 48(7): 93-100.
[2] 张华平1,2,张健鹏3,马树萍4, 范洪达1. 时变时滞不确定离散奇异切换系统的鲁棒H∞滤波[J]. J4, 2012, 47(7): 59-69.
[3] 张华平1,2,马树萍3, 范洪达1. 时变时滞不确定离散Markov跳跃广义系统的鲁棒输出反馈镇定[J]. J4, 2012, 47(1): 62-71.
[4] 刘龙1,李明2,于立洋3. 一般线性有理期望经济模型的新指数稳定法则[J]. J4, 2011, 46(7): 78-82.
[5] 樊仲光1,2,梁家荣3,肖剑4. 一类不确定奇异周期时变系统的鲁棒非脆弱H控制[J]. J4, 2011, 46(1): 20-27.
[6] 焦建民. 一类不确定中立型系统的鲁棒稳定性分析[J]. J4, 2011, 46(1): 28-34.
[7] 孙林, 郑煜, 姚娟. 不确定离散奇异系统的鲁棒非脆弱H状态反馈控制[J]. J4, 2011, 46(1): 35-41.
[8] 李亚男1,刘磊坡2,王玉光3. 非线性时滞输入系统的滑模控制[J]. J4, 2010, 45(6): 99-104.
[9] 牛艳艳,邢伟. 含非线性项的不确定离散切换系统的容错控制[J]. J4, 2010, 45(5): 52-57.
[10] . 具有时滞的不确定离散脉冲切换系统的保性能控制问题研究[J]. J4, 2009, 44(5): 56-61.
[11] 闫鹏,沈艳军,王建凤. 类广义中立型系统的稳定性分析[J]. J4, 2009, 44(4): 66-71 .
[12] 张佳成 吴保卫. 非线性中立系统混合型反馈保性能控制器设计[J]. J4, 2009, 44(10): 67-74.
[13] 王顺康,王林山 . 具有马尔可夫跳跃参数的变时滞静态神经网络的全局指数稳定性[J]. J4, 2008, 43(4): 81-84 .
[14] 陈 莉 . 不确定奇异系统的鲁棒故障诊断滤波器设计[J]. J4, 2007, 42(7): 62-65 .
[15] 李翠翠,沈艳军*,朱 琳 . 不确定线性奇异系统的有限时间控制[J]. J4, 2007, 42(12): 104-109 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!