您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (6): 49-56.doi: 10.6040/j.issn.1671-9352.0.2015.397

• • 上一篇    下一篇

希尔伯特空间上近似对偶g-框架的扰动新结果及特征刻画

张伟1,付艳玲2   

  1. 1.北京工业大学应用数理学院, 北京 100124;2.河南财政税务高等专科学校信息工程系, 河南 郑州 451464
  • 收稿日期:2015-08-24 出版日期:2016-06-20 发布日期:2016-06-15
  • 作者简介:张伟(1979— ),男,博士研究生,讲师,研究方向为小波分析及其应用、框架理论. E-mail:zwfylhappy@126.com
  • 基金资助:
    国家自然科学基金资助项目(11271037)

New perturbation results and characterization on approximately dual g-frames in hilbert spaces

ZHANG Wei1, FU Yan-ling2   

  1. 1. College of Applied Sciences, Beijing University of Technology, Beijing 100124, China;
    2. Department of Information Engineering, Henan Finance and Taxation College, Zhengzhou 451464, Henan, China
  • Received:2015-08-24 Online:2016-06-20 Published:2016-06-15

摘要: 得到了Hilbert空间近似对偶g-框架扰动的一些新结果;给出g-框架的近似对偶精确表达及其一些充分条件。

关键词: g-框架, 近似对偶g-框架, 扰动

Abstract: In this paper, some new results on approximately dual g-frames perturbation are presented. An explicit expression and some sufficient conditions for approximately dual g-frames are given.

Key words: perturbation, g-frames, approximately dual g-frames

中图分类号: 

  • O174.2
[1] DUFFIN D J, SCHAEFFER A C. A class of nonharmonic fourier series[J]. Transactions of the American Mathematical Society,1952, 72:341-366.
[2] YOUNG R M. An introduction to nonharmonic fourier series[M]. New York: Academic Press, 1990.
[3] DAUBECHIES I, GROSSMANN A, MEYER Y. Painless nonorthogonal expansions[J]. Journal of Mathematical Physics, 1986, 27:1271-1283.
[4] SUN Wenchang. G-frame and g-Riesz bases[J]. Journal of Mathematical Analysis and Applications, 2006, 322(1):437-452.
[5] CHRISTENSEN O, LAUGESEN R S. Approximately dual frames in Hilbert spaces and application to Gabor frames[J]. Sampling Theory in Signal and Image Processing, 2010, 9(3):77-93.
[6] DING Mingling, ZHU Yucan. G-Besselian frames in Hilbert spaces[J]. Acta Mathematica Sinica(English Series), 2010, 26(11):2117-2130.
[7] KHOSRAVI A, MUSAZADEH K. Fusion frames and g-frames[J]. Journal of Mathematical Analysis and Applications, 2008, 342:1068-1083.
[8] RYNNE B P, YOUNGSON M A. Linear functional analysis[M]. Springer Undergraduate Mathematics Series, 2006.
[9] KHOSRAVI A. Approximate duality of g-frames in Hilbert spaces[J]. Acta Mathematica Scientia, 2014, 34B(3):639-652.
[10] ZHU Yucan. Characterizations of g-Riesz bases in Hilbert spaces[J]. Acta Mathematica Scientia, 2008, 24(10):1727-1736.
[11] 李艳婷,李登峰.广义框架的近似对偶框架的构造及扰动[J]. 河南大学学报(自然科学版), 2015, 45(2):127-130. LI Yanting, LI Dengfeng. The construction and perturbation of approximatrly dual frame for g-frames[J]. Journal of Henan University(Natural Science), 2015, 45(2):127-123.
[1] 宋亮,冯金顺,程正兴. 多重Gabor框架的存在性与稳定性[J]. 山东大学学报(理学版), 2017, 52(8): 17-24.
[2] 任雪芳,张凌. 逆P-集合的扰动定理与数据的扰动挖掘[J]. 山东大学学报(理学版), 2016, 51(12): 54-60.
[3] 彭家寅. BL-代数的扰动模糊理想[J]. 山东大学学报(理学版), 2016, 51(10): 78-94.
[4] 吴松丽1,2,陈桂友3*. 外-扰动与属性合取收缩规律挖掘-分离[J]. 山东大学学报(理学版), 2014, 49(06): 1-5.
[5] 王文华,曹怀信*,李玮. (A,B)-量子测量[J]. J4, 2012, 47(4): 70-76.
[6] 周燕1,2,刘培玉1,2,赵静1,2,王乾龙1,2. 基于自适应惯性权重的混沌粒子群算法[J]. J4, 2012, 47(3): 27-32.
[7] 黄玉娟1, 于文广2. 稀疏过程下保费与理赔相关的风险模型的破产概率[J]. J4, 2011, 46(7): 56-59.
[8] 刘琴 曹怀信 王秋芬. Hilbert空间中Bessel列的广义扰动[J]. J4, 2010, 45(2): 50-53.
[9] 鄢来云 沈艳军. 基于扰动观测器的一类网络控制系统的H控制[J]. J4, 2010, 45(1): 80-85.
[10] 仓定帮1,宋晓秋2,陈藏1. α次积分余弦函数的扰动定理[J]. J4, 2009, 44(12): 67-70.
[11] 王 桥,刘晓冀* . Banach空间中算子广义Drazin逆的刻画及扰动[J]. J4, 2008, 43(8): 42-45 .
[12] 李翠翠,沈艳军*,朱 琳 . 不确定线性奇异系统的有限时间控制[J]. J4, 2007, 42(12): 104-109 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!