山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (10): 4-6.doi: 10.6040/j.issn.1671-9352.0.2017.001
赵文英,海进科*
摘要: 设G是有限群N通过有限群H的半直积。 证明了某些条件下G的每个Coleman自同构均为内自同构。
中图分类号:
[1] KURZWEIL H, STELLMACHER B. The theory of finite groups[M]. Berlin: Spinger-Verlag, 2004. [2] 海进科,王伟,何威萍.关于有限群Coleman自同构的一个注记[J]. 山东大学学报(理学版),2016, 51(4):35-38. HAI Jinke, WANG Wei, HE Weiping. A note on Coleman automorphisms of finitegroups[J]. Journal of Shandong University(Natural Science), 2016, 51(4):35-38. [3] HERTWECK M, KIMMERLE W. Coleman automorphisms of finite groups[J]. Math Z, 2002, 242: 203-215. [4] BREWSTER B,WILCOX E. Complete finite semidirect products and wreath products[J]. Arch Math, 2011, 96:301-309. [5] DADE E C. Sylow-centralizing sections of outer automorphism groups of finitegroups are nilpotent[J]. Math Z, 1975, 141: 57-76. [6] GROSS F. Automorphisms which centralizes a Sylow p- subgroup[J]. J Algebra, 1982, 77(1):202-233. [7] 海进科,李正兴. 有限ATI-群的类保持Coleman自同构[J]. 数学学报, 2010, 53(5): 891-896. HAI Jinke, LI Zhengxing. Class-preserving Coleman automorphisms of finite ATI-groups[J]. Acta Mathematica Sinica, 2010, 53(5):891-896. [8] 海进科, 王玉雷. 具有一个T.I.Sylow 2-子群的有限群的类保持Coleman自同构[J]. 数学学报, 2008, 51(6): 1115-1118. HAI Jinke, WANG Yulei. Class-preserving Coleman automorphisms of finite groups with a T.I.Sylow 2-subgroup[J]. ActaMathematica Sinica, 2008, 51(6):1115-1118. [9] HERTWECK M. Class-preserving Coleman automorphisms of finite groups[J]. Monatash Math, 2002, 136:1-7. [10] SEHGAL S K. Units in integral group rings[M]. Harlow: Longman Scientific and Technical Press, 1993. |
[1] | 海进科,王伟,何威萍. 关于有限群Coleman自同构的一个注记[J]. 山东大学学报(理学版), 2016, 51(4): 35-38. |
[2] | 郭继东1,海进科2*. 关于类保持自同构的一个注记[J]. 山东大学学报(理学版), 2014, 49(06): 46-49. |
|