山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (10): 56-63.doi: 10.6040/j.issn.1671-9352.0.2016.607
何国庆1,张量1,刘海蓉2
HE Guo-qing1, ZHANG Liang1, LIU Hai-rong2
摘要: 建立了具有半对称度量联络的广义Sasakian空间形式中关于子流形的Chen-Ricci不等式。 这些不等式刻画了子流形关于半对称度量联络的内在不变量(Ricci曲率)、k-Ricci曲率与外在不变量(平均曲率平方‖H‖2)之间的关系。
中图分类号:
[1] CHEN B Y. Some pinching and classification theorems for minimal submanifolds[J]. Arch Math, 1993, 60(6):568-578. [2] CHEN B Y. δ-invariants, inequalities of submanifolds and their applications[C] // MIHAI A, MIHAI I, MIRON R. Topics in Differential Geometry. Bucharest: Editura Academeiei Române, 2008. [3] CHEN B Y. Pseudo-Riemannian geometry, δ-invariants and applications[M]. New Jersey: World Scientic, 2011. [4] CHEN B Y. Relations between Ricci curvature and shape operator for submanifolds with arbitrary codimensions[J]. Glasgow Math J, 1999, 41(1):33-41. [5] CHEN B Y. On Ricci curvature of isotropic and Langrangian submanifolds in complex space forms[J]. Arch Math(Basel), 2000, 74:154-160. [6] MATSUMOTO K, MIHAI I, OIAGA A. Ricci curvature of submanifolds in complex space forms[J]. Rev Roumaine Math Pures Appl, 2001, 46:775-782. [7] MIHAI I. Ricci curvature of submanifolds in Sasakian space forms[J]. J Aust Math Soc, 2002, 72(2):247-256. [8] ALEGRE P, CARRIAZO A, KIM Y H, et al. Chens inequality for submanifolds of generalized space forms[J]. Indian J Pure Appl Math, 2007, 38:185-201. [9] TRIPATHI M M. Chen-Ricci inequality for submanifolds of contact metric manifolds[J]. Journal of Advanced Mathematical Studies, 2008, 1(1-2):111-135. [10] ÖZGÜR C. B. Y. Chen inequalities for submanifolds a Riemannian manifold of a quasi-constant curvature[J]. Turk J Math, 2011, 35:501-509. [11] HAYDAN H A. Subspaces of a space with torsion[J]. Proc London Math Soc, 1932, 34:7-50. [12] YANO K. On semi-symmetric metric connection[J]. Rev Roumaine Math Pures Appl, 1970, 15:1579-1586. [13] NAKAO Z. Submanifolds of a Riemanian with semi-symmetric metric connections[J]. Proc Amer Math Soc, 1976, 54:261-266. [14] MIHAI A, ÖZGÜR C. Chen inequalities for submanifolds of real space forms with a semi-symmetric metric connection[J]. Taiwanese J Math, 2010, 14(4):1465-1477. [15] MIHAI A, ÖZGÜR C. Chen inequalities for submanifolds of complex space forms and Sasakian space forms endowed with semi-symmetric metric connections[J]. Rocky Mountain J Math, 2011, 5(41):1653-1673. [16] ZHANG Pan, ZHANG Liang, SONG Weidong. Chens inequalities for submanifolds of a Riemannian manifold of quasi-constant curvature with a semi-symmetric metric connection[J]. Taiwanese J Math, 2014, 18(6):1841-1862. [17] BLAIR D E. Riemannian geometry of contact and symplectic manifolds[M]. Boston: Birkhauser, 2002. [18] ALGEGRE P, BLAIR D E, CARRIAZO A. Generalized Sasakian space forms[J]. Israel J Math, 2004, 141:157-183. |
[1] | 刘旭东,潘旭林,张量. 具有半对称度量联络拟常曲率空间中子流形的Casorati曲率不等式[J]. 山东大学学报(理学版), 2017, 52(2): 55-59. |
|