山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (10): 64-71.doi: 10.6040/j.issn.1671-9352.0.2016.598
荣文萍,崔静*
RONG Wen-ping, CUI Jing*
摘要: 在非Lipschitz条件下建立了由布朗运动驱动的一类非线性随机发展方程的μ-概几乎自守解的存在性, 并举例说明结论的合理性。
中图分类号:
[1] BOCHNER S. Continuous mappings of almost automorphic and almost periodic functions[J]. Proc Natl Acad Sci USA, 1964, 52(4):907-910. [2] ZHANG Chuanyi. Pseudo almost periodic solutions of some differential equations[J]. J Math Anal Appl, 1994, 181(1):62-76. [3] LIANG Jin, ZHANG Jun, XIAO Tijun. Composition of pseudo almost automorphic and asymptotically almost automorphic functions[J]. J Math Anal Appl, 2008, 340(2):1493-1499. [4] BLOT J, CIEUTAT P, EZZINBI K. New approach for weighted pseudo-almost periodic functions under the light of measure theory, basic results and applications[J]. Appl Anal, 2013, 92(3):493-526. [5] FU Miaomiao, LIU Zhenxin. Square-mean almost automorphic solutions for some stochastic differential equations[J]. Proc Amer Math Soc, 2010, 138(10):3689-3701. [6] CHEN Zhang, LIN Wei. Square-mean pseudo almost automorphic process and its application to stochastic evolution equations[J]. J Funct Anal, 2011, 261(1):69-89. [7] DIOP M A, EZZINBI K, MBAYE M M. Existence and global attractiveness of a pseudo almost periodic solution in p-th mean sense for stochastic evolution equation driven by a fractional Brownian motion[J]. Stochastics, 2015, 87(6):1061-1093. [8] BLOT J, CIEUTAT P, EZZINBI K. Measure theory and pseudo almost automorphic functions: new developments and applications[J]. Nonlinear Anal, 2012, 75(4):2426-2447. [9] CAO Junfei, YANG Qigui, HUANG Zaitang. On almost periodic mild solutions for stochastic functional differential equations[J]. Nonlinear Anal, 2012, 13(1):275-286. [10] CHANG Yongkui, ZHAO Zhihan, NGuérékata G M. A new composition theorem for square-mean almost automorphic functions and applications to stochastic differential equations[J]. Nonlinear Anal, 2011, 74(6):2210-2219. [11] LI Xiliang, HAN Yuliang, LIU Baifeng. Square-mean almost automorphic solutions to some stochastic evolution equations I: autonomous case[J]. Acta Math Appl Sin Engl Ser, 2015, 31(3):577-590. [12] LIU Jinghuai, SONG Xiaoqiu. Almost automorphic and weighted pseudo almost automorphic solutions of semilinear evolution equations[J]. J Funct Anal, 2010, 258(1):196-207. [13] XIAO Tijun, LIANG Jin, ZHANG Jun. Pseudo almost automorphic solutions to semilinear differential equations in Banach space[J]. Semigroup Forum, 2008, 76(3):518-524. [14] XIAO Tijun, ZHU Xingxing, LIANG Jin. Pseudo-almost automorphic mild solutions to nonautonomous differential equations and applications[J]. Nonlinear Anal, 2009, 70(11):4079-4085. [15] ZHAO Zhihan, CHANG Yongkui, NIETO J J. Almost automorphic and pseudo almost automorphic mild solutions to an abstract differential equations in Banach spaces[J]. Nonlinear Anal, 2010, 72(3-4):1886-1894. [16] EZZINBI K, MIRAOUI M. μ-pseudo almost periodic and automorphic solutions in the α-norm for some partial functional differential equations[J]. Numer Funct Anal Optim, 2015, 36(8):991-1012. [17] CHANG Yongkui, LUO Xiaoxia. Pseudo almost automorphic behavior of solutions to a semi-linear fractional differential equation[J]. Math Commun, 2015, 20(1):53-68. [18] CHANG Yongkui, NGuérékata G M, ZHANG Rui. Stepanov-like weighted pseudo almost automorphic functions via measure theory[J]. Bull Malays Math Sci Soc, 2016, 39(3):1005-1041. [19] CHANG Yongkui, TANG Chao. Asymptotically almost automorphic solutions to stochastic differential equations driven by a Lévy process[J]. Stochastics, 2016, 88(7):980-1011. [20] CAO Junfei, YANG Qigui, HUANG Zaitang. Existence and exponential stability of almost automorphic mild solutions for stochastic functional differential equations[J]. Stochastics, 2011, 83(3):259-275. [21] SEIDLER J. Da Prato-Zabczyks maximal inequality revisited I[J]. Math Bohem, 1993, 118(1):67-106. |
[1] | 申柳肖,赵春. 基于尺度结构的竞争种群系统的最优输入率控制[J]. 山东大学学报(理学版), 2018, 53(7): 21-29. |
[2] | 曹雪靓,雒志学. 污染环境下森林发展系统的最优控制[J]. 山东大学学报(理学版), 2018, 53(7): 15-20. |
[3] | 李涛涛. 二阶半正椭圆微分方程径向正解的存在性[J]. 山东大学学报(理学版), 2017, 52(4): 48-55. |
[4] | 张莎,贾梅,李燕,李晓晨. 分数阶脉冲微分方程三点边值问题解的存在性和唯一性[J]. 山东大学学报(理学版), 2017, 52(2): 66-72. |
[5] | 冯海星,翟成波. 高阶非线性分数阶微分方程系统的多个正解[J]. 山东大学学报(理学版), 2017, 52(12): 48-57. |
[6] | 陈彬. 格林函数变号的三阶周期边值问题[J]. 山东大学学报(理学版), 2016, 51(8): 79-83. |
[7] | 吴成明. 二阶奇异耦合系统正周期解的存在性[J]. 山东大学学报(理学版), 2015, 50(10): 81-88. |
[8] | 杨浩, 刘锡平, 吴贵云. 一类分数阶p-Laplace算子微分方程非局部边值问题解的存在性[J]. 山东大学学报(理学版), 2015, 50(04): 56-62. |
[9] | 陈强, 贾梅, 张海斌. 一类非线性分数阶微分方程四点边值问题解的存在性和唯一性[J]. 山东大学学报(理学版), 2015, 50(04): 42-48. |
[10] | 郑春华, 刘文斌. 一类具有时滞的分数阶微分方程边值问题正解的存在性[J]. 山东大学学报(理学版), 2015, 50(03): 73-79. |
[11] | 赵玉环,张晓斌. 线性随机发展方程的极大似然估计[J]. 山东大学学报(理学版), 2014, 49(05): 54-60. |
[12] | 杨雪洁,孙国正*,陈雯. 一个拟线性奇摄动问题的激波解[J]. 山东大学学报(理学版), 2014, 49(04): 79-83. |
[13] | 周文学1,2, 刘海忠1. 一类分数阶微分方程边值问题解的存在性[J]. J4, 2013, 48(8): 45-49. |
[14] | 秦小娜,贾梅*,刘帅. 具Caputo导数分数阶微分方程边值问题正解的存在性[J]. J4, 2013, 48(10): 62-67. |
[15] | 张海燕1,2,李耀红2. 非线性混合高阶奇异微分方程组边值问题的正解[J]. J4, 2012, 47(2): 31-35. |
|