山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (12): 10-15.doi: 10.6040/j.issn.1671-9352.0.2017.177
郭双建,李怡铮
GUO Shuang-jian, LI Yi-zheng
摘要: 设H为带有可逆对极的拟Hopf代数, B为左拟Yetter-Drinfeld模代数,并且HBQ为拟Hopf Yetter-Drinfeld(H,B)-模范畴。讨论了范畴HBQ何时是预辫子monoidal范畴。假设B是H交换的,则拟Hopf Yetter-Drinfeld模范畴HQ上的辫子诱导出HBQ上的预辫子当且仅当HBQ中的每一个对象是dyslectic。
中图分类号:
[1] DRINFELD V G. Quasi-Hopf algebras[J]. Leningrad Math J, 1990, 1:1419-1457. [2] DRINFELD V G. Quasi-Hopf algebras and Knizhnik-Zamolodchikov equations[M] // Problems of Modern Quantum Field Theory. Berlin: Springer,1989: 1-13 [3] BULACU D, PANAITE F, VAN OYSTAEYEN F. Quasi-Hopf algebra actions and smash product[J]. Comm Algebra, 2000, 28:631-651. [4] WANG Shuanhong. Braided monoidal categories associated Yetter-Drinfeld categories[J]. Comm Algebra, 2002, 30:5111-5124. [5] BULACU D, NAUWELAERTS E. Radfords biproduct for quasi-Hopf algebras and bosonization[J]. J Pure Appl Algebra, 2002, 174:1-42. [6] BULACU D, PANAITE F, CAENEPEEL S. Yetter-Drinfeld categories for quasi-Hopf algebra[J]. Comm Algebra, 2006, 34:1-35. [7] PAREIGIS B. On braiding and dyslexia[J]. J Algebra, 1995, 171(2):413-425. [8] CAENEPEEL S, VAN OYSTAEYEN F, ZHANG Yinhuo. Quantum Yang-Baxter module algebras[J]. K-theory, 1994, 8(3):231-255. |
[1] | 周楠,张涛,鹿道伟. Monoidal Hom-双代数上的L-R-smash积[J]. 山东大学学报(理学版), 2017, 52(2): 5-8. |
[2] | 鹿道伟,王珍. 双代数胚上的L-R smash积[J]. 山东大学学报(理学版), 2017, 52(12): 32-35. |
[3] | 赵晓凡, 张晓辉. MonoidalHom-双代数上的广义Hom-smash积[J]. 山东大学学报(理学版), 2015, 50(10): 59-63. |
|