您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (2): 77-84.doi: 10.6040/j.issn.1671-9352.0.2016.182

• • 上一篇    下一篇

扩展的KP-Benjamin-Bona-Mahoney方程的对称、约化和精确解

李玉,刘希强*   

  1. 聊城大学数学科学学院, 山东 聊城 252059
  • 收稿日期:2016-04-26 出版日期:2017-02-20 发布日期:2017-01-18
  • 通讯作者: 刘希强(1957— ),男,博士,教授,研究方向为非线性发展方程系统. E-mail:liuxiq@sina.com E-mail:liyu910118@sina.com
  • 作者简介:李玉(1991— ),女,硕士研究生,研究方向为非线性发展方程求解研究. E-mail:liyu910118@sina.com
  • 基金资助:
    国家自然科学基金与中国工程物理研究院基金课题(NSAF:11076015)

Symmetry, reduction and exact solutions of the extended KP-Benjamin-Bona-Mahoney equation

LI Yu, LIU Xi-qiang*   

  1. School of Mathematical Sciences, Liaocheng University, Liaocheng 252059, Shandong, China
  • Received:2016-04-26 Online:2017-02-20 Published:2017-01-18

摘要: 应用经典李群方法得到了扩展的KP-Benjamin-Bona-Mahoney方程的对称和约化方程。通过求解得到的约化方程,结合(G'/G)-展开法和tanh函数展开法以及Riccati辅助方程,求出了该方程的一些精确解,包括行波解、有理函数解、双曲函数解、三角函数解等。最后,利用对称和伴随方程,求出了该方程的守恒律。

关键词: KP-Benjamin-Bona-Mahoney方程, 李点对称, 守恒律, 精确解, 约化方程

Abstract: By applying the direct symmetry method, the classical Lie symmetry and reduced equation of the extended KP-Benjamin-Bona-Mahoney equation are obtained. At the same time, through the reduced equation, a great many of solutions are derived by solving the reduction equations with(G'/G)-expansion method and the tanh function expansion method and Riccati auxiliary equation, including travelling wave solutions, the rational function solutions, hyperbolic function solutions, the trigonometric function solutions and so on. Finally, the conservation laws of the equation are obtained by using the symmetry and adjoint equations.

Key words: KP-Benjamin-Bona-Mahoney equation, reduction equation, conservation laws, exact solution, Lie point symmetry

中图分类号: 

  • O175.2
[1] 陈美,刘希强.Konopelchenko-Dubrovsky方程组的对称,精确解和守恒律[J]. 纯粹数学与应用数学, 2011,27(4):533-539. CHEN Mei, LIU Xiqiang. Exact solutions and conservation laws of the Konopelchenko-Dubrovsky equations[J]. Pure and Applied Mathematics, 2011,27(4):533-539.
[2] HIROTA R, SATSUMA J. Soliton solutions of a coupled Korteweg-de Vries equation[J]. Phy Lett A,1981, 85(8-9):407-408.
[3] HE Jihuan, WU Xuhong. Exp-function method for nonlinear wave equation [J]. Chaos Solitons and Fractals, 2006, 30(3):700-708.
[4] ZHENG Bin. Exp-function method for solving fractional partial differential equations[J]. The Scientific World Journal, 2013, 2013: 465723.
[5] 李宁,刘希强. Broer-Kau-Kupershmidt方程组的对称、约化和精确解[J]. 物理学报,2013, 62(16):18-24. LI Ning, LIU Xiqiang. Symmetries, reductions and exact solutions of Broer-Kau-Kupershmidt system[J]. Acta Physica Sinica, 2013, 62(16):18-24.
[6] 张颖元,刘希强,王岗伟.(2+1)维非线性发展方程的对称约化和显式解[J]. 量子电子学报,2012,29(4):411-416. ZHANG Yingyuan, LIU Xiqiang, WANG Gangwei. Symmetries, reductions and explicit solution of the(2+1)dimensional nonlinear evolution equation[J]. Chinese Journal of Quantum Electronics, 2012, 29(4):411-416.
[7] ZHAO Xueqin, ZHI Hongyan, ZHANG Hongqing. Improved Jacobi-function method with symbolic computation to construct new double-periodic solutions for the generalized Ito system[J]. Chaos, Solitions and Fractals, 2006, 28(1):112-126.
[8] ZHANG Hongqing. Extended Jacobi elliptic function expansion method and its applications[J]. Commun Nonlinear Sci Numer Simul, 2007, 12(5):627-635.
[9] FAN Engui, ZHANG Hongqing. A note on the homogeneous balance method [J]. Phys Lett A, 1998, 246(5):403-406.
[10] FAN Engui, HONA Y C. Generalized tanh method extended to special types of nonlinear equations[J]. Zeitschrift fur Naturforschung A-Journal of Physical Sciences, 2002, 57(8):692-700.
[11] WAZWAZ A M. The extended tanh method for the Zakharov-Kuznetsov(ZK)equation, the modified ZK equation, and its generalized forms[J]. Commun Nonlinear Sci Numer Simul, 2008,13(6):1039-1047.
[12] WAZWAZ A M. Exact solutions of compact and noncompact structures for the KP-BBM equation[J]. Applied Mathematics and Computation, 2005, 169(1):700-712.
[13] WAZWAZ A M. The extended tanh method for new compact and noncompact solutions for the KP-BBM and the ZK-BBM equations[J]. Chaos, Solitons & Fractals, 2008, 38(5):1505-1516.
[14] ABDOU M A. Exact periodic wave solutions to some nonlinear evolution equations[J]. International Journal of Nonlinear Science, 2008, 6(2):145-153.
[15] SONG Ming, YANG Chenxi, ZHANG Bengong. Exact solitary wave solutions of the Kadomtsov-Petviashvili-Benjamin-Bona-Mahony equation[J]. Applied Mathematics and Computation, 2010, 217(4):1334-1339.
[16] ADEM K R, KHALIQUE C M. Exact solutions and conservation laws of a(2+1)-dimensional nonlinear KP-BBM equation[J]. Hindawi Publishing Corporation, 2013, 2013:1-5.
[1] 刘勇, 刘希强. (2+1)维Caudrey-Dodd-Gibbon方程相似、约化、精确解[J]. 山东大学学报(理学版), 2015, 50(04): 49-55.
[2] 郭鹏,张磊,王小云,孙小伟. 几个特殊类型非线性方程的显式精确解[J]. J4, 2012, 47(12): 115-120.
[3] 辛祥鹏,刘希强,张琳琳. (2+1)-维非线性发展方程的对称约化和精确解[J]. J4, 2010, 45(8): 71-75.
[4] 郭鹏,万桂新,王小云,孙小伟. 非线性圆杆波导波动方程的显式精确解[J]. J4, 2010, 45(11): 122-126.
[5] 郭霄怡 徐明瑜. 广义Oldroyd-B流体的非定常Couette流的精确解[J]. J4, 2009, 44(10): 60-63.
[6] 朱 宏,刘 雄 . 一类Wick型随机KdV-MKdV方程的白噪声泛函解[J]. J4, 2008, 43(5): 45-49 .
[7] 齐海涛,金辉 . 广义二阶流体平板不定常流动的解析解[J]. J4, 2006, 41(4): 61-64 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!