您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2018, Vol. 53 ›› Issue (10): 1-5.doi: 10.6040/j.issn.1671-9352.0.2017.506

• •    下一篇

半格序完全正则周期半群

邵勇   

  1. 西北大学数学学院, 陕西 西安 710127
  • 收稿日期:2017-09-25 出版日期:2018-10-20 发布日期:2018-10-09
  • 作者简介:邵勇(1980— ),男,博士,教授,研究方向为半群代数理论. E-mail:shaoyong@nwu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(11571278)

Semilattice-ordered completely regular periodic semigroups

SHAO Yong   

  1. School of Mathematics, Northwest University, Xian 710127, Shaanxi, China
  • Received:2017-09-25 Online:2018-10-20 Published:2018-10-09

摘要: 通过研究半格序完全正则周期半群,证明了半格序完全正则周期半群的乘法导出一定是正则纯正密码群。运用偏序关系,给出了半格序完全正则周期半群是半格序正则带和分配格的等价刻画。

关键词: 半格序完全正则周期半群, 幂等元, 分配格, 偏序关系

Abstract: It is proved that the multiplicative reducts of semilattice-ordered completely regular periodic semigroups are regular orthocryptogroups through the research of semilattice-ordered completely regular periodic semigroups. Semilattice-ordered completely regular periodic semigroups are equivalent characterizations of semilattice-ordered regular band and distributive lattices are obtained by using partial orders.

Key words: idempotent element, distributive lattice, semilattice-ordered completely regular periodic semigroup, partial order

中图分类号: 

  • O152.7
[1] HOWIE J M. Fundamentals of semigroup theory[M]. Oxford: Oxford Science Publication, 1995.
[2] PETRICH M, REILLY N R. Completely regular semigroups[M]. New York: John Wiley & Sons, 1999.
[3] GOULD M, ISKRA J A, TSINAKIS C. Globals of completely regular periodic semigroups[J]. Semigroup Forum, 1984, 29(1):365-374.
[4] MCALISTER D B. Amenable ordered inverse semigroup[J]. Journal of Algebra, 1980, 65(1):118-146.
[5] ROMANO D A. Semilattice-ordered semigroups with apartness representation problem[J]. Journal of Advanced Mathematical Studies, 2012, 5(2):13-19.
[6] GAJDOS P, KURIL M. On free semilattice-ordered semigroups satisfying xn=x[J]. Semigroup Forum, 2010, 80(1):92-104.
[7] KURIL M, POLAK L. On Varieties of semilattice-ordered semigroups[J]. Semigroup Forum, 2005, 71(1):27-48.
[8] GHOSH S, PASTIJN F, ZHAO X. Varieties generated by ordered bands I[J]. Order, 2005, 22(2):109-128.
[9] 邵勇, 赵宪钟. 半格序Clifford半群[J]. 数学进展, 2010, 39(1):59-63. SHAO Yong, ZHAO Xianzhong. Semilattice-ordered Clifford semigroups [J]. Advance in Mathematics, 2010, 39(1):59-63.
[10] SHAO Yong, CRVENKOVIC S, MITROVIC M. The zeleznikow problem on a class of additively idempotent semirings[J]. Journal of the Australian Mathematical Society, 2013, 95(3):404-420.
[1] 刘春辉. 关于格蕴涵代数的(∈,∈∨q(λ, μ))-模糊LI-理想[J]. 山东大学学报(理学版), 2018, 53(2): 65-72.
[2] 刘春辉. BL代数的(,∨(-overq))-模糊滤子格[J]. 山东大学学报(理学版), 2017, 52(10): 104-110.
[3] 鲁静, 赵彬. 模糊Quantale范畴中的投射对象[J]. 山东大学学报(理学版), 2015, 50(02): 47-54.
[4] 林屏峰,曾伟,曾纯一. 集合Λ上的半格Γ确定的二元关系半群PΓ(Λ×Λ)的幂等元[J]. J4, 2013, 48(8): 36-40.
[5] 罗永贵,徐波,游泰杰. 半群PHn的每个星理想的秩和幂等元秩[J]. J4, 2013, 48(2): 42-48.
[6] 罗永贵. 半群W(n,r)的非群元秩和相关秩[J]. J4, 2013, 48(12): 70-74.
[7] 赵平. 半群V(n,r)的幂等元秩[J]. J4, 2012, 47(2): 78-81.
[8] 杨伟萍1,林梦雷2. 直觉模糊信息系统中的信息粒度[J]. J4, 2012, 47(1): 87-92.
[9] 赵平1, 游泰杰2, 徐波2,胡华碧1. 降序且保序有限部分变换半群的幂等元秩[J]. J4, 2011, 46(4): 75-77.
[10] 谢维奇1,2,刘道广1,张丽2. 内P-集合的代数性质[J]. J4, 2011, 46(3): 69-72.
[11] 乔希民1,2,吴洪博1*. 格上BR0-代数结构的表示定理[J]. J4, 2010, 45(9): 38-42.
[12] 张丽梅1,2. 分配格上矩阵的M-P逆和加权M-P逆[J]. J4, 2010, 45(12): 33-39.
[13] 王凌云. 半环上的分配格同余[J]. J4, 2009, 44(9): 63-65.
[14] 乔占科. 半环的一类子半环的拟正则性[J]. J4, 2009, 44(8): 56-57.
[15] 刘惊雷 王玲玲 张伟. 角色分配格的生成算法[J]. J4, 2009, 44(11): 52-56.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!