山东大学学报(理学版) ›› 2018, Vol. 53 ›› Issue (3): 82-87.doi: 10.6040/j.issn.1671-9352.0.2017.501
袁清献1,2,3,高丽兰1,2,*,李瑞欣3*,刘迎节3,林祥龙1,2,张西正3
YUAN Qing-xian1,2,3, GAO Li-lan1,2*, LI Rui-xin3*, LIU Ying-jie3, LIN Xiang-long1,2, ZHANG Xi-zheng3
摘要: 运用三维制图软件Solidworks设计了软骨支架宏观结构,采用3D打印技术和冷冻干燥技术制备了丝素蛋白-Ⅱ型胶原软骨支架。通过实验测试了支架的密度、孔隙率和弹性模量;在支架上接种软骨细胞后,采用MTT法、HE染色和扫描电镜观察3种方法分析了细胞在支架上的增殖和形态。结果显示,丝素蛋白-Ⅱ型胶原软骨支架弹性模量具有率相关性,即随着应变率增加,支架的弹性模量增大;支架的密度和孔隙率分别为(0.086 6±0.008 4)g/cm3和(89.3±3.26)%。支架接种细胞培养7 d后,细胞生长增殖加快;HE染色观察发现,细胞在表层区生长最多,深层区最少;扫描电镜观察发现,支架孔径形状规则,通透性较好,细胞多分布于孔壁表面。
中图分类号:
[1] LIU M, LIU N, ZANG R, et al. Engineering stem cell niches in bioreactors[J]. World Journal of Stem Cells, 2013, 5(4):124-135. [2] BOSE S, ROY M, BANDYOPADHYAY A. Recent advances in bone tissue engineering scaffolds[J]. Trends in Biotechnology, 2012, 30(10):546-554. [3] ZHANG X, REAGAN M R, KAPLAN D L. Electrospun silk biomaterial scaffolds for regenerative medicine[J]. Advanced Drug Delivery Reviews, 2009, 61(12):988-1006. [4] YIN L H, PENG P, MU X, et al. Preparation and characterization of three dimensional porous silk fibroin/gelatin composite scaffolds[J]. Journal of Functional Materials, 2013, 44(23):3388-3391. [5] FENG X X, ZHANG L L, CHEN J Y, et al. Preparation and characterization of novel nanocomposite films formed from silk fibroin and nano-TiO2.[J]. International Journal of Biological Macromolecules, 2007, 40(2):105-111. [6] KWANSA A L, DE V R, FREEMAN J W. Tensile mechanical properties of collagen type I and its enzymatic crosslinks[J]. Biophysical Chemistry, 2016, s 214/215:1-10. [7] 秦胜男. Ⅱ型胶原—透明质酸复合支架材料的构建及在软骨组织工程应用的初步研究[D]. 广州:暨南大学, 2010. QIN Shengnan. The construction of collagen type Ⅱ-hyaluronic acid composite biomaterial and preliminary application in the tissue-engineering cartilage[D]. Guangzhou: Jinan University, 2010. [8] CATROS S, GUILLEMOT F, NANDAKUMAR A, et al. Layer-by-layer tissue microfabrication supports cell proliferation in vitro and in vivo.[J]. Tissue Engineering Part C Methods, 2012, 18(18):62-70. [9] 周惠琼, 吴东海, 李东民. 应用酶解及氯化钠盐析方法对4个种属Ⅱ型胶原的提纯及比较[J]. 中华医学杂志, 2001, 81(11):696-697. ZHOU Huiqiong, WU Donghai, LI Dongmin, et al. Purification and comparison of four species type II collagen by enzymolysis and sodium chloride salting out[J]. Chinese Medical Journal, 2001, 81(11):696-697. [10] KAPFER S C, HYDE S T, MECKE K, et al. Minimal surface scaffold designs for tissue engineering[J]. Biomaterials, 2011, 32(29):6875-6882. [11] YOO D J. Computer-aided porous scaffold design for tissue engineering using triply periodic minimal surfaces[J]. International Journal of Precision Engineering & Manufacturing, 2011, 12(1):61-71. [12] SUN W, LAL P. Recent development on computer aided tissue engineering-a review[J]. Computer Methods & Programs in Biomedicine, 2002, 67(2):85-103. [13] GAO L L, ZHANG C Q, DONG L M, et al. Description of depth-dependent nonlinear viscoelastic behavior for articular cartilage in unconfined compression[J]. Materials Science & Engineering C, 2012, 32(2):119-125. [14] OTTANI V, RASPANTI M, RUGGERI A. Collagen structure and functional implications[J]. Micron, 2001, 32(3):251-260. [15] DIAO H J, FUNG H S, YEUNG P, et al. Dynamic cyclic compression modulates the chondrogenic phenotype in human chondrocytes from late stage osteoarthritis[J]. Biochemical & Biophysical Research Communications, 2017, 486(1):14-21. [16] ZHOU F, ZHANG X, CAI D, et al. Silk fibroin-chondroitin sulfate scaffold with immuno-inhibition property for articular cartilage repair[J]. Acta Biomaterialia, 2017, 63(2):64-75. [17] 陈隆坤. 双层胶原/大孔径PLA纳米纤维支架用于关节骨软骨组织工程的研究[D].杭州:浙江大学,2011. CHEN Longkun. Fabrication of bilaver collagen/microporous nanofiber scaffolds and its application to articular osteochondral tissue engineering[D]. Hangzhou: Zhejiang University, 2011. [18] CASTRO-CESEÑA A B, CAMACHO-VILLEGAS T A, LUGO-FABRES P H, et al. Effect of starch on the mechanical and in vitro properties of collagen-hydroxyapatite sponges for applications in dentistry[J]. Carbohydr Polym, 2016, 148(1):78-85. [19] ZHU H, WU B, FENG X, et al. Preparation and characterization of bioactive mesoporous calcium silicate—silk fibroin composite films[J]. Sichuan Journal of Physiological Sciences, 2011, 98(2):330-341. [20] ZHU H, JIAN J, SHEN J. Biomacromolecules electrostatic self-assembly on 3-dimensional tissue engineering scaffold.[J]. Biomacromolecules, 2004, 5(5):1933-1939. [21] WHANG K, GOLDSTICK T K, HEALY K E. A biodegradable polymer scaffold for delivery of osteotropic factors[J]. Biomaterials, 2000, 21(24):2545-2551. |
[1] | 栾义超,杨秀萍,张静静,刘清,张春秋. 压缩条件下腰椎间盘松弛特性的有限元仿真[J]. 山东大学学报(理学版), 2018, 53(3): 77-81. |
[2] | 杨秀萍,栾义超,张静静,刘清,张春秋. 不同加载条件下的腰椎间盘蠕变实验研究[J]. 山东大学学报(理学版), 2017, 52(5): 31-36. |
[3] | 伏虎,陈玲,门玉涛,蒋彦龙. 缺损软骨在滚压载荷下的实验与有限元分析[J]. 山东大学学报(理学版), 2017, 52(5): 37-40. |
[4] | 张静静,杨秀萍,刘清,张春秋. 基于Biot理论的腰椎间盘力学响应分析[J]. 山东大学学报(理学版), 2016, 51(11): 93-98. |
[5] | 陈玲,门玉涛,王加江. 种植术与分根术联合治疗术后牙体可靠性分析[J]. 山东大学学报(理学版), 2016, 51(5): 6-10. |
[6] | 王加江,陈玲,门玉涛,季辰. 缩短牙种植术与分根术联合修复周期的可行性研究[J]. 山东大学学报(理学版), 2016, 51(3): 40-43. |
[7] | 王龙韬, 杨秀萍, 刘清, 杨文静, 范振敏, 张春秋. 滚压载荷下关节软骨的溶质传递[J]. 山东大学学报(理学版), 2015, 50(01): 81-84. |
[8] | 姜俊, 杨秀萍, 刘清, 张春秋. 压缩载荷下关节软骨溶质扩散的模拟[J]. 山东大学学报(理学版), 2015, 50(01): 85-89. |
|