您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2018, Vol. 53 ›› Issue (4): 46-54.doi: 10.6040/j.issn.1671-9352.0.2017.483

• • 上一篇    下一篇

由马氏链驱动的正倒向随机微分方程

肖新玲   

  1. 山东师范大学数学与统计学院, 山东 济南 250014
  • 收稿日期:2017-09-22 出版日期:2018-04-20 发布日期:2018-04-13
  • 作者简介:肖新玲(1978— ),女,博士,研究方向为金融数学、金融管理与金融工程. E-mail:xinlingxiao@126.com
  • 基金资助:
    国家自然科学基金青年科学基金资助项目(11301309);山东师范大学教改项目(2016JG28);山东师范大学数学与统计学院青年专项基金资助项目(shxzhxxm201503)

Forward-backward stochastic differential equations on Markov chains

XIAO Xin-ling   

  1. School of Mathematics and Statistics, Shandong Normal University, Jinan 250014, Shandong, China
  • Received:2017-09-22 Online:2018-04-20 Published:2018-04-13

摘要: 主要研究由马氏链驱动的完全耦合的正倒向随机微分方程(forward-backward stochastic differential equation, FBSDE)解的存在唯一性;采用在研究通常的完全耦合的FBSDE时常用的连续性方法, 通过半鞅的Ito乘积法则与Lebesgue 控制收敛定理, 运用迭代法得到由马氏链驱动的完全耦合的FBSDE解的存在唯一性定理。

关键词: 解的存在唯一性, 马氏链, 正倒向随机微分方程

Abstract: In this paper, we mainly study the solutions about fully coupled forward-backward stochastic differential equations(FBSDE)on Markov chains. Using the usual method of continuation which is used to study fully coupled forward-backward stochastic differential equations, the Ito product rule of semimartingales, the Lebesgue control convergence theorem and iterative method, theorems about the solutions of the fully coupled forward-backward stochastic differential equations on Markov chains are obtained.

Key words: forward-backward stochastic differential equation, Markov chain, existence and uniqueness of solution

中图分类号: 

  • O211.63
[1] PARDOUX E, PENG Shige. Adapted solution of a backward stochastic differential equations [J]. System and Control Letters, 1990, 14: 55-61.
[2] COHEN S, ELLIOTT R. Solutions of backward stochastic differential equations on Markov chains [J]. Communications on Stochastic Analysis, 2008, 2(2): 251-262.
[3] COHEN S, ELLIOTT R. Comparisons for backward stochastic differential equations on Markov chains and related no-arbitrage conditions [J]. The Annals of Applied Probability, 2010, 20(1): 267-311.
[4] COHEN S, ELLIOTT R, CHARLES E. A general comparison theorem for backward stochastic differential equations [J]. Advances in Applied Probability, 2010, 42(3): 878-898.
[5] COHEN S. Representing filtration consistent nonlinear expectations as g-expectations in general probability spaces [J]. Stochastic Processes and their Applications, 2012, 122(4): 1601-1626.
[6] HU Ying, PENG Shige. Solutions of forward-backward stochastic differential equations [J]. Probability Theory and Related Fields, 1995, 103(2): 273-283.
[7] PENG Shige, WU Zhen. Fully coupled forward-backward stochastic differential equations [J]. SIAM Journal on Control and Optimization, 1999, 37(3):825-843.
[8] WU Zhen. Forward-backward stochastic differential equations with Brownian motion and Poisson process [J]. Acta Mathematicae Applicatae Sinica, 1999, 15(4): 433-443.
[9] JI Shaolin, LIU Haodong, XIAO Xinling. Fully coupled forward-backward stochastic differential equations on Markov chains [J]. Advances in Difference Equations, 2016, 2016(133): 1-18.
[10] IKEDA N, WATANABE S. Stochastic differential equations and diffusion processes [M]. Amsterdam:North Holland Publishing, Co, 1989.
[1] 王素云,李永军. 带超越共振点非线性项的二阶常微分方程边值问题的可解性[J]. 山东大学学报(理学版), 2018, 53(6): 53-56.
[2] 聂天洋,史敬涛. 完全耦合正倒向随机控制系统的动态规划原理与最大值原理之间的联系[J]. 山东大学学报(理学版), 2016, 51(5): 121-129.
[3] 孟祥波1,张立东1*,杜子平2. 随机利率下保险公司最优保费策略[J]. J4, 2013, 48(3): 106-110.
[4] 孙启良,张启侠*. 随机H2/H∞控制的最大值原理方法[J]. J4, 2013, 48(09): 90-95.
[5] 何 坤 . 连续时间完备市场下利用BSDEs考虑套期保值问题[J]. J4, 2008, 43(2): 1-07 .
[6] 王光臣 . 部分可观测信息下的线性二次非零和随机微分对策[J]. J4, 2007, 42(6): 12-15 .
[7] 何 坤 . 倒向随机微分方程解Z的比较定理[J]. J4, 2007, 42(10): 1-04 .
[8] 杨维强,彭实戈 . 期权稳健定价模型及实证[J]. J4, 2006, 41(2): 69-73 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!