山东大学学报(理学版) ›› 2018, Vol. 53 ›› Issue (4): 7-10.doi: 10.6040/j.issn.1671-9352.0.2017.220
曹亚萌,黎娇,李国全*
CAO Ya-meng, LI Jiao, LI Guo-quan*
摘要: 对于有限域模型F np 与A,B⊂F np,说明了存在子空间V与常数D>0满足dim V≥D,并且A+B中含有V的平移。
中图分类号:
[1] GREEN B. Surveys in Combinatorics 2005[M]. Cambridge: Cambridge University Press, 2005: 1-27. [2] GREEN B, TAO T. Freimans theorem in finite fields via extremal set theory[J]. Combin Probab Comput, 2009, 18:335-355. [3] GOWERS W, WOLF J. Linear forms and higher-degree uniformity for functions on F np[J]. Geom Funct Anal, 2011, 21:36-69. [4] BATEMAN M, KATZ N. New bounds on cap sets[J]. J Amer Math Soc, 2012, 25:585-613. [5] EVEN-ZOHAR C, LOVETT S. The Freiman-Ruzsa theorem over finite fields[J]. J Combin Theory, 2014, 125:333-341. [6] WOLF J. Finite field models in arithmetic combinatorics-ten years on[J]. Finite Fields and Their Appl, 2015, 32:233-274. [7] 李芳, 关爱霞, 李国全. 有限Abel群中的和集与Bohr集的子集[J]. 山东大学学报(理学版), 2017, 52(2):39-43. LI Fang, GUAN Aixia, LI Guoquan. Sumsets and subsets of Bohr sets in finite abelian groups[J]. Journal of Shandong University(Natural Science), 2017, 52(2):39-43. [8] CROOT E, ŁABA I, SISASK O. Arithmetic progressions in sumsets and Lp-almost-periodicity[J]. Combin Probab Comput, 2013, 22:351-365. |
[1] | 李芳,关爱霞,李国全. 有限Abel群中的和集与Bohr集的子集[J]. 山东大学学报(理学版), 2017, 52(2): 39-43. |
|