您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2018, Vol. 53 ›› Issue (4): 1-6.doi: 10.6040/j.issn.1671-9352.0.2017.480

• •    下一篇

具有渐近非负Ricci曲率完备非紧的黎曼流形

陈爱云1,薛琼1*,陈欢欢1,肖小峰2   

  1. 1. 武汉理工大学理学院, 湖北 武汉 430070;2. 武汉纺织大学机械工程与自动化学院, 湖北 武汉 430073
  • 收稿日期:2017-09-22 出版日期:2018-04-20 发布日期:2018-04-13
  • 通讯作者: 薛琼(1980— ),女,博士,副教授,研究方向为微分几何及应用. E-mail:rabbit-801005@163.com E-mail:1113603226@qq.com
  • 作者简介:陈爱云(1993— ),女,硕士研究生,研究方向为微分几何及应用. E-mail:1113603226@qq.com
  • 基金资助:
    国家自然科学基金资助项目(61573012);中央高校基本科研业务费专项资金资助项目(2017IA006)

Complete noncompact Riemannian manifold with asymptotically nonnegative Ricci curvature

CHEN Ai-yun1, XUE Qiong1*, CHEN Huan-huan1, XIAO Xiao-feng2   

  1. 1. School of Science, Wuhan University of Technology, Wuhan 430070, Hubei, China;
    2. School of Mechanical Engineering and Automation, Wuhan Textile University, Wuhan 430073, Hubei, China
  • Received:2017-09-22 Online:2018-04-20 Published:2018-04-13

摘要: 研究了一类具有渐近非负Ricci曲率完备非紧的n维黎曼流形,利用推广的Excess函数和Busemann函数,证明了具有渐近非负Ricci曲率完备非紧的n维黎曼流形在kp(r)≥-C/((1+r)α)和大体积增长的条件下具有有限拓扑型,从而推广了已有的一系列结果。

关键词: 渐近非负Ricci曲率, Excess函数, 大体积增长, 有限拓扑型, Busemann函数

Abstract: We study the topology of complete noncompact Riemannian manifolds with asymptotically nonnegative Ricci curvature. By using extensions of Excess function and Busemann function, it is proved that they have finite topological type under sectional curvature bounded from nonnegative below kp(r)≥- C/((1+r)α) and large volume growth, which extend a series known results.

Key words: asymptotically nonnegative Ricci curvature, Busemann function, finite topological type, Excess function, large volume growth

中图分类号: 

  • O186
[1] ABRESCH U. Lower curvature bounds, Toponogovs theorem, and bounded topology I[J]. Annales Scientifiques De L École Normale Supérieure, 1985, 18(4):651-670.
[2] ABRESCH U. Lower curvature bounds, Toponogovs theorem,and bounded topology Ⅱ[J]. Annales Scientifiques De L École Normale Supérieure, 1987, 20(3):475-502.
[3] ZHU Shunhui. A volume comparison theorem for manifolds with asymptotically nonnegative curvature and its applications[J]. American Journal of Mathematics, 1994, 116(3):669-682.
[4] ABRESCH U, GROMOLL D. On complete manifolds with nonnegative Ricci curvature[J]. Journal of the American Mathematical Society, 1990, 3(2):355-374.
[5] MAHAMAN B. Open manifolds with asymptotically nonnegative curvature[J]. Illinois Journal of Mathematics, 2005, 49(3):705-717.
[6] HU Zisheng, XU Senlin. Complete manifolds with asymptotically nonnegative Ricci curvature and weak bounded geometry[J]. Archiv Der Mathematik, 2007, 88(5):455-467.
[7] SANTOS L, NEWTON L. Manifolds with asymptotically nonnegative minimal radial curvature[J]. Advances in Geometry, 2007, 7(3):331-355.
[8] YEGANEFAR N. Topological finiteness for asymptotically nonnegatively curved manifolds[J]. Mathematics, 2009, 108(1):109-134.
[9] ZHANG Yuntao. Open manifolds with asymptotically nonnegative Ricci curvature and large volume growth[J]. Proceedings of the American Mathematical Society, 2015, 143(18):4913-4923.
[10] MAHAMAN B. Topology of manifolds with asymptotically nonnegative Ricci curvature[J]. African Diaspora Journal of Mathematics, 2015, 18(2):11-17.
[11] SHEN Zhongmin. Complete manifolds with nonnegative Ricci curvature and large volume growth[J]. Inventiones Mathematicae, 1996, 125(3):393-404.
[12] MACHIGASHIRA Y. Complete open manifolds of non-negative radial curvature[J]. Pacific Journal of Mathematics, 1994, 165(1):153-160.
[13] CHEEGER J. Critical points of distance functions and applications to geometry[M]. Berlin:Springer, 1991:1-38.
[14] MAHAMAN B. A volume comparison theorem and number of ends for manifolds with asymptotically nonnegative Ricci curvature[J]. Revista Matemática Complutense, 2000, 13(2):399-409.
[15] SHA Jiping, SHEN Zhongmin.Complete manifolds with nonnegative Ricci curvature and quadratically nonnegatively curved infinity[J]. American Journal of Mathematics, 1997, 119(6):1399-1404.
[1] 何国庆,张量,刘海蓉. 具有半对称度量联络的广义Sasakian空间形式中的子流形的Chen-Ricci不等式[J]. 山东大学学报(理学版), 2017, 52(10): 56-63.
[2] 文海燕,刘建成. 伪黎曼空间型中具有常数量曲率的类空子流形[J]. 山东大学学报(理学版), 2017, 52(10): 89-96.
[3] 邓义华. f-调和函数的Hess矩阵的估计及其在分裂定理中的应用[J]. 山东大学学报(理学版), 2017, 52(4): 83-86.
[4] 刘旭东,潘旭林,张量. 具有半对称度量联络拟常曲率空间中子流形的Casorati曲率不等式[J]. 山东大学学报(理学版), 2017, 52(2): 55-59.
[5] 何超,李影,宋卫东. 局部对称伪黎曼流形中的2-调和类时子流形[J]. 山东大学学报(理学版), 2016, 51(10): 54-58.
[6] 苏曼,张量. 关于伪黎曼空间形式中类空子流形Chen不等式的两个结果[J]. 山东大学学报(理学版), 2016, 51(10): 59-64.
[7] 李影, 宋卫东. 关于deSitter空间中的伪脐类时子流形[J]. 山东大学学报(理学版), 2015, 50(10): 64-67.
[8] 潘旭林, 张攀, 张量. 拟常曲率空间中子流形的Casorati曲率不等式[J]. 山东大学学报(理学版), 2015, 50(09): 84-87.
[9] 刘敏, 宋卫东. 拟常曲率复射影空间中的全实极小子流形[J]. 山东大学学报(理学版), 2014, 49(12): 71-75.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!