山东大学学报(理学版) ›› 2018, Vol. 53 ›› Issue (4): 1-6.doi: 10.6040/j.issn.1671-9352.0.2017.480
• • 下一篇
陈爱云1,薛琼1*,陈欢欢1,肖小峰2
CHEN Ai-yun1, XUE Qiong1*, CHEN Huan-huan1, XIAO Xiao-feng2
摘要: 研究了一类具有渐近非负Ricci曲率完备非紧的n维黎曼流形,利用推广的Excess函数和Busemann函数,证明了具有渐近非负Ricci曲率完备非紧的n维黎曼流形在kp(r)≥-C/((1+r)α)和大体积增长的条件下具有有限拓扑型,从而推广了已有的一系列结果。
中图分类号:
[1] ABRESCH U. Lower curvature bounds, Toponogovs theorem, and bounded topology I[J]. Annales Scientifiques De L École Normale Supérieure, 1985, 18(4):651-670. [2] ABRESCH U. Lower curvature bounds, Toponogovs theorem,and bounded topology Ⅱ[J]. Annales Scientifiques De L École Normale Supérieure, 1987, 20(3):475-502. [3] ZHU Shunhui. A volume comparison theorem for manifolds with asymptotically nonnegative curvature and its applications[J]. American Journal of Mathematics, 1994, 116(3):669-682. [4] ABRESCH U, GROMOLL D. On complete manifolds with nonnegative Ricci curvature[J]. Journal of the American Mathematical Society, 1990, 3(2):355-374. [5] MAHAMAN B. Open manifolds with asymptotically nonnegative curvature[J]. Illinois Journal of Mathematics, 2005, 49(3):705-717. [6] HU Zisheng, XU Senlin. Complete manifolds with asymptotically nonnegative Ricci curvature and weak bounded geometry[J]. Archiv Der Mathematik, 2007, 88(5):455-467. [7] SANTOS L, NEWTON L. Manifolds with asymptotically nonnegative minimal radial curvature[J]. Advances in Geometry, 2007, 7(3):331-355. [8] YEGANEFAR N. Topological finiteness for asymptotically nonnegatively curved manifolds[J]. Mathematics, 2009, 108(1):109-134. [9] ZHANG Yuntao. Open manifolds with asymptotically nonnegative Ricci curvature and large volume growth[J]. Proceedings of the American Mathematical Society, 2015, 143(18):4913-4923. [10] MAHAMAN B. Topology of manifolds with asymptotically nonnegative Ricci curvature[J]. African Diaspora Journal of Mathematics, 2015, 18(2):11-17. [11] SHEN Zhongmin. Complete manifolds with nonnegative Ricci curvature and large volume growth[J]. Inventiones Mathematicae, 1996, 125(3):393-404. [12] MACHIGASHIRA Y. Complete open manifolds of non-negative radial curvature[J]. Pacific Journal of Mathematics, 1994, 165(1):153-160. [13] CHEEGER J. Critical points of distance functions and applications to geometry[M]. Berlin:Springer, 1991:1-38. [14] MAHAMAN B. A volume comparison theorem and number of ends for manifolds with asymptotically nonnegative Ricci curvature[J]. Revista Matemática Complutense, 2000, 13(2):399-409. [15] SHA Jiping, SHEN Zhongmin.Complete manifolds with nonnegative Ricci curvature and quadratically nonnegatively curved infinity[J]. American Journal of Mathematics, 1997, 119(6):1399-1404. |
[1] | 何国庆,张量,刘海蓉. 具有半对称度量联络的广义Sasakian空间形式中的子流形的Chen-Ricci不等式[J]. 山东大学学报(理学版), 2017, 52(10): 56-63. |
[2] | 文海燕,刘建成. 伪黎曼空间型中具有常数量曲率的类空子流形[J]. 山东大学学报(理学版), 2017, 52(10): 89-96. |
[3] | 邓义华. f-调和函数的Hess矩阵的估计及其在分裂定理中的应用[J]. 山东大学学报(理学版), 2017, 52(4): 83-86. |
[4] | 刘旭东,潘旭林,张量. 具有半对称度量联络拟常曲率空间中子流形的Casorati曲率不等式[J]. 山东大学学报(理学版), 2017, 52(2): 55-59. |
[5] | 何超,李影,宋卫东. 局部对称伪黎曼流形中的2-调和类时子流形[J]. 山东大学学报(理学版), 2016, 51(10): 54-58. |
[6] | 苏曼,张量. 关于伪黎曼空间形式中类空子流形Chen不等式的两个结果[J]. 山东大学学报(理学版), 2016, 51(10): 59-64. |
[7] | 李影, 宋卫东. 关于deSitter空间中的伪脐类时子流形[J]. 山东大学学报(理学版), 2015, 50(10): 64-67. |
[8] | 潘旭林, 张攀, 张量. 拟常曲率空间中子流形的Casorati曲率不等式[J]. 山东大学学报(理学版), 2015, 50(09): 84-87. |
[9] | 刘敏, 宋卫东. 拟常曲率复射影空间中的全实极小子流形[J]. 山东大学学报(理学版), 2014, 49(12): 71-75. |
|