您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2018, Vol. 53 ›› Issue (6): 17-22.doi: 10.6040/j.issn.1671-9352.0.2017.562

• • 上一篇    下一篇

亚循环群到亚循环群之间的同态个数

张良1,海进科1,2*   

  1. 1. 伊犁师范学院数学与统计分院, 新疆 伊宁 835000;2. 青岛大学数学与统计学院, 山东 青岛 266071
  • 收稿日期:2017-10-31 出版日期:2018-06-20 发布日期:2018-06-13
  • 作者简介:张良(1979— ), 男, 博士, 讲师, 研究方向为群与代数编码. E-mail:zhangliang0819@aliyun.com*通信作者简介:海进科(1964— ), 男, 博士, 教授, 研究方向为有限群及其表示. E-mail:haijinke2002@aliyun.com
  • 基金资助:
    山东省自然科学基金资助项目(ZR2016AM21);伊犁师范学院博士基金项目(2017YSBS10)

The number of homomorphisms from metacyclic groups to metacyclic groups

  1. 1. College of Mathematics and Statistics, Yili Normal University, Yining 835000, Xinjiang, China;
    2. College of Mathematics and Statistics, Qingdao University, Qingdao 266071, Shandong, China
  • Received:2017-10-31 Online:2018-06-20 Published:2018-06-13

摘要: 计算了一类m阶循环群通过2p阶循环群扩张的亚循环群之间的同态个数, 并给出了此类亚循环群自同态半群的阶。作为应用,验证了T. Asai和T. Yohsdia猜想对此类亚循环群成立。

关键词: 亚循环群, 群同态, 同余关系

Abstract: The number of homomorphisms between a class of metacyclic groups, which are normal cyclic groups of the order m extended by cyclic groups of the order 2p, is calculated, and the number of endomorphisms of such groups is obtained. As an application, the number of homomorphisms of such groups satisfies the conjecture of T.Asai and T.Yohsdia is varified.

Key words: metacyclic group, homomorphism, congruence relation

中图分类号: 

  • O152.6
[1] YOHSDIA T. Hom(A,G)(I)[J]. J Algebra, 1993, 156:125-156.
[2] ASAI T, YOHSDIA T. Hom(A,G)(II)[J]. J Algebra, 1993, 160:273-285.
[3] BATE M. The number of homomorphisms from finite groups to classical groups[J]. J Algebra, 2007, 308:612-628.
[4] JOHNSON J. The number of group homomorphisms from Dm into Dn[J]. The College Mathematics Journal, 2013, 44:190-192.
[5] RAJKUMAR R, GAYATHRI M, ANITHA T. The number of homomorphisms from dihedral groups in to some finite groups[J]. Mathematical Sciences International Research Journal, 2015(4):161-165.
[6] RAJKUMAR R, GAYATHRI M, ANITHA T. Enumeration of homomorphisms from modular group in to some finite groups[J]. International Journal of Mathematics and Its Applications, 2015, 3(3B):15-19.
[7] 徐明曜. 有限群导引[M]. 北京:科学出版社,1999. XU Mingyao. Finite groups: an introduction[M]. Beijing: Science Press, 1999.
[8] 闵嗣鹤,严士健. 初等数论[M]. 北京:高等教育出版社,2006. MIN Sihe, YAN Shijian. Elementary number theory[M]. Beijing: Higher Education Press, 2006.
[1] 刘妮,张苗苗. 连续定向完备序半群及其范畴性质[J]. 山东大学学报(理学版), 2016, 51(6): 57-64.
[2] 薄纯鑫, 姚炳学. (λ, μ)-反模糊粗糙子群[J]. 山东大学学报(理学版), 2015, 50(12): 23-27.
[3] 文贤红, 吴洪博*. 局部有限BL-代数的素逆演绎系统及性质[J]. 山东大学学报(理学版), 2014, 49(2): 36-41.
[4] 刘熠1,2,徐扬2,秦晓燕2,秦亚3. 剩余格的TL-滤子与TL-同余关系[J]. J4, 2012, 47(2): 98-103.
[5] 刘璐璐1, 伏文清2, 李生刚1. 模糊子坡代数、模糊理想、 模糊滤子及模糊同余关系的刻画*[J]. J4, 2011, 46(11): 48-52.
[6] 刘春辉1,徐罗山2. 关于剩余格的理想[J]. J4, 2010, 45(4): 66-71.
[7] 秦学成, 刘春辉*. 正则剩余格的fuzzy⊙理想[J]. J4, 2010, 45(10): 66-70.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!