您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (12): 102-105.doi: 10.6040/j.issn.1671-9352.0.2018.719

• • 上一篇    

相对于半对偶模的Gorenstein平坦维数有限的模的Tate同调

潘晓玲,梁力*   

  1. 兰州交通大学数理学院, 甘肃 兰州 730070
  • 发布日期:2019-12-11
  • 作者简介:潘晓玲(1993— ),女,硕士研究生,研究方向为同调代数. E-mail:945558362@qq.com*通信作者简介: 梁力(1980— ), 男, 博士, 教授, 研究方向为同调代数. E-mail:lliang@mail.lzjtu.cn
  • 基金资助:
    国家自然科学基金资助项目(11761045,11561039);兰州交通大学“百名青年优秀人才培养计划"基金资助项目;甘肃省自然科学基金资助项目(18JR3RA113,17JR5RA091)

Tate homology of modules of finite Gorenstein flat dimension with respect to a semidualizing module

PAN Xiao-ling, LIANG Li*   

  1. School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China
  • Published:2019-12-11

摘要: 对于半对偶模C, 研究了具有Tate FC-分解的模的Tate同调TorFC。特别地, 建立了一个连接 TorFC, TorFC 和 TorGFC 的长正合列。作为应用, 证明了该Tate同调 TorFC的vanishing性和平衡性。

关键词: 半对偶模, Tate FC-分解, Tate FC-同调

Abstract: For a semidualing module C, Tate homology TorFC of modules admitting Tate FC-resolutions is investigated. In particular, a long exact sequence connecting TorFC, TorFC and TorGFC is built. As applications, the vanishing and the balance of this Tate homology theory are proved.

Key words: semidualizing module, Tate FC-resolution, Tate FC-homology

中图分类号: 

  • O154.2
[1] SATHER-WAGSTAFF S, SHARIF T, WHITE D. Tate cohomology with respect to semidulizing modules[J]. J Algebra, 2010, 324:2336-2368.
[2] HU Jiangsheng, GENG Yuxian, DING Nanqing. Tate cohomology of Gorenstein flat modules with respect to semidulizing modules[J]. Rocky Mountain J Math, 2017, 47:205-238.
[3] LIANG Li. Tate homology of modules of finite Gorenstein flat dimension[J]. Algebra Represent Theor, 2013, 16:1541-1560.
[4] SALIMI M, SATHER-WAGSTAFF S, TAVASOLI E, et al. Relative Tor functors with respect to a semidualizing module[J]. Algebra Represent Theor, 2014, 17:103-120.
[1] 陈秀丽,陈建龙. C-投射(内射,平坦)模与优越扩张[J]. 山东大学学报(理学版), 2017, 52(8): 85-89.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!