您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (12): 50-58.doi: 10.6040/j.issn.1671-9352.0.2019.100

• • 上一篇    

三角代数上Lie积为平方零元的非线性Jordan高阶可导映射

费秀海1,戴磊2,朱国卫1   

  1. 1. 滇西科技师范学院数理学院, 云南 临沧 677099;2. 渭南师范学院数学与统计学院, 陕西 渭南 714099
  • 发布日期:2019-12-11
  • 作者简介:费秀海(1980— ), 男, 博士, 副教授, 研究方向为算子代数与算子理论. E-mail: xiuhaifei@snnu.edu.cn

Nonlinear Jordan higher derivable maps on triangular algebras by Lie product square zero elements

FEI Xiu-hai1, DAI Lei2, ZHU Guo-wei1   

  1. 1. School of Mathematics and Physics, Dianxi Science and Technology Normal University, Lincang 677099, Yunnan, China;
    2. School of Mathematics and Statistics, Weinan Normal University, Weinan 714099, Shaanxi, China
  • Published:2019-12-11

摘要: 设U是一个 2-无挠的三角代数,D ={dn}n∈N是U上一个Lie积为平方零元的非线性Jordan高阶可导映射。证明了三角代数U上的每一个Lie积为平方零元的非线性Jordan高阶可导映射都是高阶导子。作为结论的应用,得到套代数或 2-无挠的上三角分块矩阵代数上的每一个Lie积为平方零元的非线性Jordan高阶可导映射都是高阶导子。

关键词: 三角代数, 高阶导子, Jordan 高阶导子, 平方零元

Abstract: Let U be a 2-torsion free triangular algebra, D={dn}n∈N is a nonlinear Jordan higher derivable map on triangular algebra U by Lie product square zero elements. In this paper, it is shown that every nonlinear Jordan higher derivable map on triangular algebra U by Lie product square zero elements is a higher derivation. As its application, we get that every nonlinear Jordan higher derivable map on a nest algebra or a 2-torsion free block upper triangular matrix algebra U by Lie product square zero elements is a higher derivation.

Key words: triangular algebra, higher derivation, Jordan higher derivation, square zero element

中图分类号: 

  • O177.1
[1] ZHU Jun, XIONG Changping. All-derivable points in continuous nest algebras[J]. J Math Anal Appl, 2008, 340(2): 845-853.
[2] ZHAO Jinping, ZHU Jun. Jordan higher all-derivable points in triangular algebras[J]. Linear Algebra Appl, 2012, 436(9): 3072-3086.
[3] HUANG Wenbo, LI Jiankui, HE Jun. Characterizations of Jordan mappings on some rings and algebras through zero products[J]. Linear and Multilinear Algebra, 2017, 60(2): 167-180.
[4] WU Jin, LU Fangyan. Lie derivable mappings on prime rings[J]. Linear and Multilinear Algebra, 2012, 60(2):167-180.
[5] LU Fangyan, LIU Benhong. Lie derivable maps on B(X)[J]. J Math Anal Appl, 2010, 372(2): 369-376.
[6] ZHANG Jianhua,YU Weiyan. Jordan derivations of triangular algebras[J]. Linear Algebra Appl, 2006, 419(1): 251-255.
[7] XIAO Zhankui, WEI Feng. Jordan higher derivations on triangular algebras[J]. Linear Algebra Appl, 2010, 432(10): 2615-2622.
[8] CHEUNG W S. Lie derivations of triangular algebras[J]. Linear and Multilinear Algebra, 2003, 51(3): 299-310.
[9] JI Peisheng, QI Weiqing. Characterizations of Lie derivations of triangular algebras[J]. Linear Algebra Appl, 2011, 435(9): 1137-1146.
[10] YU Weiyan, ZHANG Jianhua. Nonlinear Lie derivations of triangular algebras[J]. Linear Algebra Appl, 2010, 432(11): 2953-2960.
[11] XIAO Zhankui, WEI Feng. Nonlinear Lie higher derivations on triangular algebras[J]. Linear and Multilinear Algebra, 2012, 60(8): 979-994.
[12] FEI Xiuhai, ZHANG Jianhua. Nonlinear generalized Lie derivations of triangular algebras[J]. Linear and Multilinear Algebra, 2017, 65(6): 1158-1170.
[13] WANG Long. Nonlinear mappings on full matrices derivable at zero point[J]. Linear and Multilinear Algebra, 2016, 56(11): 725-730.
[14] WONG Dein, MA Xiaobin, CHEN Li. Nonlinear mappings on upper triangular matrices derivable at zeropoint[J]. Linear Algebra Appl, 2015, 65(11): 236-248.
[15] 孟利花, 张建华. 三角代数上的一类非全局三重可导映射[J].数学学报, 2017, 60(6): 955-960. MENG Lihua, ZHANG Jianhua. A class of non-global triple derivable maps on triangular algebra[J]. Acta Math Sinica, 2017, 47(1):119-124.
[16] 武鹂, 张建华. 三角代数上 Lie 积为平方零元的非线性 Jordan 可导映射[J].山东大学学报(理学版), 2017, 52(12): 42-47. WU Li, ZHANG Jianhua. Nonlinear Jordan derivable maps on triangular algebras by Lie product square zero elements[J]. Journal of Shandong University(Natural Science), 2017, 52(12): 42-47.
[1] 费秀海,张建华. 三角代数上关于内导子空间Lie不变的线性映射[J]. 《山东大学学报(理学版)》, 2019, 54(2): 79-83.
[2] 张霞,张建华. 三角代数上互逆元处的高阶ξ-Lie可导映射[J]. 《山东大学学报(理学版)》, 2019, 54(10): 79-84.
[3] 武鹂,张建华. 三角代数上Lie积为平方零元的非线性Jordan可导映射[J]. 山东大学学报(理学版), 2017, 52(12): 42-47.
[4] 胡丽霞,张建华. 三角代数上的零点Lie高阶可导映射[J]. J4, 2013, 48(4): 5-9.
[5] 纪培胜,綦伟青,刘忠燕 . II1型超有限因子中的三角代数的Jordan理想[J]. J4, 2008, 43(4): 6-08 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!