您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (2): 106-110.doi: 10.6040/j.issn.1671-9352.0.2018.363

• • 上一篇    

A型退化仿射Hecke代数的Gröbner-Shirshov基

木娜依木·迪里夏提,阿布都卡的·吾甫*   

  1. 新疆大学数学与系统科学学院, 新疆 乌鲁木齐 830046
  • 发布日期:2019-02-25
  • 作者简介:木娜依木·迪里夏提(1993— ),女,硕士研究生,研究方向为量子群和Gröbner-Shirshov基理论. E-mail:18396830969@163.com*通信作者简介:阿布都卡的·吾甫(1963— ),男,博士,教授,研究方向为量子群和Gröbner-Shirshov基理论. E-mail:abdu@vip.sina.com
  • 基金资助:
    国家自然科学基金资助项目(11361056)

Gröbner-Shirshov basis of degenerate affine Hecke algebras of type A

Munayim Dilxat, Abdukadir Obul*   

  1. College of Mathematics and System Sciences, Xinjiang University, Urumqi 830046, Xinjiang, China
  • Published:2019-02-25

摘要: 给出了A型退化仿射Hecke代数的Gröbner-Shirshov基,并且用此Gröbner-Shirshov基和结合代数的钻石合成引理,给出A型退化仿射Hecke代数的一组线性基。

关键词: Grö, bner-Shirshov基, 合成运算, A型退化仿射 Hecke代数

Abstract: A Gröbner-Shirshov basis of degenerate affine Hecke algebra of type A is given. By using this Gröbner-Shirshov basis and the composition-diamond lemma of associative algebras, a linear basis of the degenerate affine Hecke algebra of type A is constructed.

Key words: Grö, bner-Shirshov basis, compositions, degenerate affine Hecke algebra of type A

中图分类号: 

  • O153.3
[1] BUCHBERGER B. An algorithm for finding a basis for the residue class ring of a zero-dimensional ideal[D]. Innsbruck: University of Innsbruck, 1965.
[2] BERGMAN G M. The diamond lemma for ring theory[J]. Adv in Math,1978, 29:178-218.
[3] SHIRSHOV A I. Some algorithmic problem for Lie algebras[J]. Sibirsk Mat Z, 1962, 3(2):292-296.
[4] BOKUT L A. Embeddings into simple associative algebras[J]. Algebra and Logic,1976, 15(2):73-90.
[5] 高珍珍,杨士林,阿布都卡的·吾甫.Anick分解和量子群Uq(sl2)的一些同调性质[J]. 山东大学学报(理学版),2014, 49(10):17-27. GAO Zhenzhen, YANG Shilin, Abdukadir Obul. Anick resolution and some homological properties of quantum group Uq(sl2)[J]. Journal of Shandong University(Natural Science), 2014, 49(10):17-27.
[6] 热比古丽·吐尼亚牧,阿布都卡的·吾甫. 量子包络代数Uq(An)的Gelfand-Krillov 维数[J].山东大学学报(理学版)2017, 52(10):12-23. Tuniyazi Rebiguli, Abdukadir Obul. Gelfand-Krillov dimension of quantum enveloping algebra Uq(An)[J]. Journal of Shandong University(Natural Science), 2017, 52(10):12-23.
[7] MACDONALD I G. Affine Hecke algebras and orthogonal polynomials[M] // Cambridge Tacts in Mathematics. Cambridge: Cambridge University Press, 2003, 157.
[8] BOKUT L A, CHEN Y Q. Gröbner-Shirshov bases: some new results[M] // Proceedings of the Second International Congress in Algebra and Combinatorics. New York: World Scientific, 2008: 35-56.
[9] HU J, LI F. On the modified affine Hecke algebras and quiver Hecke algebras of type A[EB/OL].(2016-08-18)[2018-08-11]. http://cn.arxiv.org/abs/1608.05453. arxiv:1608.0545v3
[1] 热比古丽·吐尼亚孜, 阿布都卡的·吾甫. 量子包络代数Uq(An)的Gelfand-Kirillov维数[J]. 山东大学学报(理学版), 2017, 52(10): 12-17.
[2] 高珍珍, 杨士林, 阿布都卡的·吾甫. Anick分解和量子群Uq(sl2)的一些同调性质[J]. 山东大学学报(理学版), 2014, 49(10): 17-27.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!