您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (11): 58-65.doi: 10.6040/j.issn.1671-9352.4.2020.241

• • 上一篇    

毕达哥拉斯模糊三支概念格

姬儒雅1,2,魏玲1,2*,任睿思1,2,赵思雨1,2,3   

  1. 1.西北大学数学学院, 陕西 西安 710127;2.西北大学概念、认知与智能研究中心, 陕西 西安 710127;3.咸阳师范学院数学与信息科学学院, 陕西 咸阳 712000
  • 发布日期:2020-11-17
  • 作者简介:姬儒雅(1995— ), 女, 硕士研究生, 研究方向为形式概念分析、粗糙集、粒计算等. E-mail:124988147@qq.com*通信作者简介:魏玲(1972— ), 女, 博士, 教授, 研究方向为形式概念分析、粗糙集、粒计算等. E-mail:wl@nwu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(61772021);陕西省教育厅科研计划资助项目(19JK0929)

Pythagorean fuzzy three-way concept lattice

JI Ru-ya1,2, WEI Ling1,2*, REN Rui-si1,2, ZHAO Si-yu1,2,3   

  1. 1. School of Mathematics, Northwest University, Xian 710127, Shaanxi, China;
    2. Institute of Concepts, Cognition and Intelligence, Northwest University, Xian 710127, Shaanxi, China;
    3. College of Mathematics and Information Science, Xianyang Normal University, Xianyang 712000, Shaanxi, China
  • Published:2020-11-17

摘要: 将毕达哥拉斯模糊集理论引入模糊三支概念格中, 在毕达哥拉斯模糊形式背景下研究毕达哥拉斯模糊三支概念格的构造。首先, 结合毕达哥拉斯模糊集理论将对象与属性的关系同时用隶属度和非隶属度表示, 给出毕达哥拉斯模糊形式背景的定义;其次, 基于给定的阈值αβ以及三支决策思想, 将对象集(属性集)划分为正域、负域, 边界域3个部分;在此基础上, 给出2种毕达哥拉斯模糊三支概念(对象导出毕达哥拉斯模糊三支概念与属性导出毕达哥拉斯模糊三支概念)的定义和相关定理, 构建相应的概念格;最后, 结合实例阐释毕达哥拉斯模糊三支概念格在实际问题中的应用。

关键词: 三支决策, 模糊三支概念格, 毕达哥拉斯模糊形式背景, 毕达哥拉斯模糊三支概念格

Abstract: Pythagorean fuzzy set theory is introduced into fuzzy three-way concept lattice. The construction of Pythagorean fuzzy three-way concept lattice is studied under the Pythagorean fuzzy formal context. First, the relationships between objects and attributes are expressed by the membership degree and non-membership degree combined with the Pythagorean fuzzy set theory. On this foundation, the definition of the Pythagorean fuzzy formal context is given. Next, based on threshold α, β and the idea of three-way decision, the object sets(the attribute sets)are divided into three parts: positive region, negative region and boundary region. On this basis, the definitions and relevant theorems of two kinds of Pythagorean fuzzy three-way concepts(the object induced Pythagorean fuzzy three-way concept and the attribute induced Pythagorean fuzzy three-way concept)are given, and the corresponding Pythagorean fuzzy three-way concept lattices are constructed. Finally, the applications of Pythagorean fuzzy three-way concept lattice in real problems are explained in detail with examples.

Key words: three-way decision, fuzzy three-way concept lattice, Pythagorean fuzzy formal context, Pythagorean fuzzy three-way concept lattice

中图分类号: 

  • O29
[1] YAO Yiyu. An outline of a theory of three-way decisions[C] //Proceedings of the 8th International Conference on Rough Sets and Current Trends in Computing. Berlin: Springer, 2012: 1-17.
[2] 刘盾,李天瑞,李华雄.粗糙集理论:基于三支决策视角[J].南京大学学报(自然科学版), 2013, 49(5):574-581. LIU Dun, LI Tianrui, LI Huaxiong. Rough set theory: a three-way decisions perspective [J]. Journal of Nanjing University(Natural Sciences), 2013, 49(5):574-581.
[3] YAO Yiyu. Granular computing and sequential three-way decisions[C] //Rough Sets and Knowledge Technology. Berlin: Springer, 2013: 16-27.
[4] ZHANG Qinghua, LV Gongxun, CHEN Yuhong, et al. A dynamic three-way decision model based on the updating of attribute values[J]. Knowledge-Based Systems, 2017, 142:71-84.
[5] MA Xi-ao, YAO Yiyu. Three-way decision perspectives on class-specific attribute reducts[J]. Information Sciences, 2018, 450:227-245.
[6] WILLE R. Restructuring lattice theory: an approach based on hierarchies of concepts[J]. Orderd Sets D Reidel, 1982, 83:314-339.
[7] GANTER B, WILLE R. Formal concept analysis: mathematical foundations[M]. New York: Springer Verlag, 1999.
[8] 刘旭龙,洪文学,张涛.基于形式概念分析的中医辨证可视化方法[J].燕山大学学报, 2010, 34(2):162-168. LIU Xulong, HONG Wenxue, ZHANG Tao. TCM differentiation visualization methods based on formal concept analysis[J]. Journal of Yanshan University, 2010, 34(2):162-168.
[9] MISSAOUI R, GODIN R, BOUJENOUI A. Extracting exact and approximate rules from databases[C] //Proceedings of SOFTEKS Workshop on Incompleteness and Uncertainty in Information Systems. Berlin: Springer, 1993: 209-222.
[10] 郭显娥,王俊红.多维概念格与关联规则的发现[J].计算机应用,2010, 30(4):1072-1075. GUO Xiane, WANG Junhong. Multi-dimensional concept lattice and association rules discovery[J]. Journal of Computer Application, 2010, 30(4):1072-1075.
[11] SUTTON A, MALETIC J I. Recovering UML class models from C++: a detailed explanation[J]. Information and Software Technology, 2007, 49(3):212-229.
[12] GODIN R, MISSAOUI R. An incremental concept formation approach for learning from database[J]. Theoretical Computer Science, 1994, 133(2):387-419.
[13] FREEMAN L, WHITE D. Using Galois lattices to represent network data[J]. Sociological Methodology, 1993, 23:127-146.
[14] QI Jianjun, WEI Ling, YAO Yiyu. Three-way formal concept analysis[C] //International Conference on Rough Sets and Knowledge Technology. Berlin: Springer, 2014: 732-741.
[15] QI Jianjun, QIAN Ting, WEI Ling. The connections between three-way and classical lattices[J]. Knowledge-Based Systems, 2016, 91:143-151.
[16] 龙柄翰,徐伟华.模糊三支概念分析与模糊三支概念格[J].南京大学学报(自然科学版),2019,55(4):537-545. LONG Binghan, XU Weihua. Fuzzy three-way concept analysis and fuzzy three-way concept lattice[J]. Journal of Nanjing University(Natural Sciences), 2019, 55(4):537-545.
[17] ZADEH L A. Fuzzy sets[J]. Information and Control, 1965, 8(3):338-353.
[18] YAGER R R. Pythagorean fuzzy subsets[C] //Proceedings Joint IFSA World Congress and NAFIPS Annual Meeting. Edmonton: IEEE, 2013: 7-61.
[19] YAGER R R, ABBASOV A M. Pythagorean membership grades, complex numbers, and decision making[J]. International Journal of Intelligent Systems, 2013, 28(5):436-452.
[20] YAGER R R. Pythagorean membership grades in multicriteria decision making[J]. IEEE Transactions on Fuzzy Systems, 2014, 22(4):958-965.
[21] ZHANG Xiaolu, XU Zeshui. Extension of TOPSIS to multiple criteria decision making with pythagorean fuzzy sets[J]. International Journal of Intelligent Systems, 2014, 29(12):1061-1078.
[1] 余鹰,吴新念,王乐为,张应龙. 基于标记相关性的多标记三支分类算法[J]. 《山东大学学报(理学版)》, 2020, 55(3): 81-88.
[2] 刘国涛,张燕平,徐晨初. 一种优化覆盖中心的三支决策模型[J]. 山东大学学报(理学版), 2017, 52(3): 105-110.
[3] 张聪, 于洪. 一种三支决策软增量聚类算法[J]. 山东大学学报(理学版), 2014, 49(08): 40-47.
[4] 田海龙, 朱艳辉, 梁韬, 马进, 刘璟. 基于三支决策的中文微博观点句识别研究[J]. 山东大学学报(理学版), 2014, 49(08): 58-65.
[5] 杜丽娜, 徐久成, 刘洋洋, 孙林. 基于三支决策风险最小化的风险投资评估应用研究[J]. 山东大学学报(理学版), 2014, 49(08): 66-72.
[6] 张里博, 李华雄, 周献中, 黄兵. 人脸识别中的多粒度代价敏感三支决策[J]. 山东大学学报(理学版), 2014, 49(08): 48-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!