《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (4): 74-76.doi: 10.6040/j.issn.1671-9352.0.2019.388
• • 上一篇
昝立博1,张孝金2*
ZAN Li-bo1, ZHANG Xiao-jin2*
摘要: 证明了An型的根平方为零的代数的Auslander代数的经典倾斜模的个数是2n-1。
中图分类号:
[1] HAPPEL D, RINGEL C M. Tilted algebras[J]. Transactions of the American Mathematical Society, 1982, 274:399-443. [2] AUSLANDER M, REITEN I, SMALO S O. Representation theory of Artin algebras[C] //Cambridge Studies in Advanced Mathematics, 36. Cambridge: Cambridge University Press, 1997. [3] BRUSTLE T, HILLE L, RINGEL C M, et al. The Δ-filtered modules without self-extensions for the Auslander algebra of K[x] /(xn)[J]. Algebra Representation Theory, 1999, 2:295-312. [4] KAJITA N. The number of tilting modules over hereditary algebras and tilting modules over Auslander algebras[D]. Nagoya: Nagoya University, 2008. [5] ADACHI T, IYAMA O, REITEN I. τ-tilting theory [J]. Compositio Mathematica, 2014, 150:415-452. [6] IYAMA O, ZHANG X J. Classifying τ-tilting modules over the Auslander algebra of K[x] /(xn)[J]. Journal of the Mathematical Society of Japan, http://arxiv.org/abs/1602.05037. [7] IYAMA O, ZHANG X J. Tilting modules over Auslander-Gorenstein algebras[J]. Pacific Journal of Mathematics, 2019, 298(2):399-416. |
[1] | 陈文倩,张孝金,昝立博. Gorenstein代数上的倾斜模的个数[J]. 山东大学学报(理学版), 2018, 53(10): 14-16. |
[2] | 孙维昆,林汉兴. 单点扩张代数的表示维数[J]. 山东大学学报(理学版), 2016, 51(6): 85-91. |
[3] | 雷雪萍. 几乎C-倾斜模[J]. J4, 2011, 46(2): 101-104. |
[4] | 雷雪萍. WC倾斜模的AuslanderReiten对应[J]. J4, 2009, 44(12): 41-43. |
[5] | 雷雪萍 . W-C-倾斜模[J]. J4, 2008, 43(10): 27-30 . |
|