《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (10): 99-112.doi: 10.6040/j.issn.1671-9352.9.2021.005
• • 上一篇
冯圣玉,谌梓煦,王灯旭*
FENG Sheng-yu, CHEN Zi-xu, WANG Deng-xu*,
摘要: 聚硅氧烷基荧光材料作为一类性能独特的有机硅材料,在荧光探针、生物传感、力学传感、发光二极管等领域具有广阔的应用前景。基于近十几年来国内外聚硅氧烷基荧光材料的相关报道,文中结合本课题组的研究成果,综述了线型、超支化和交联3类结构的聚硅氧烷基荧光材料的研究进展,总结了各类荧光材料的合成、应用及发光机理,探讨了聚硅氧烷在荧光材料中的作用,并对未来聚硅氧烷基荧光材料的发展方向进行了总结和展望。
中图分类号:
[1] WOLF M P, SALIEB-BEUGELAAR G B, HUNZIKER P. PDMS with designer functionalities: properties, modifications strategies, and applications[J]. Progress in Polymer Science, 2018, 83:97-134. [2] LIANG J H, HUANG C B, GONG X. Silicon nanocrystals and their composites: syntheses, fluorescence mechanisms, and biological applications[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(22):18213-18227. [3] SUN D M, REN Z J, BRYCE M R, et al. Arylsilanes and siloxanes as optoelectronic materials for organic light-emitting diodes(OLEDs)[J]. Journal of Materials Chemistry C, 2015, 3(37):9496-9508. [4] KARAMAN D ??塁, SARPARANTA M P, ROSENHOLM J M, et al. Multimodality imaging of silica and silicon materials in vivo[J]. Advanced Materials, 2018, 30(24):1703651. [5] JEONG S H, HAGMAN A, HJORT K, et al. Liquid alloy printing of microfluidic stretchable electronics[J]. Lab on a Chip, 2012, 12(22):4657-4664. [6] KARATSU T. Photochemistry and photophysics of organomonosilane and oligosilanes: updating their studies on conformation and intramolecular interactions[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2008, 9(3):111-137. [7] REN Z J, YAN S K. Polysiloxanes for optoelectronic applications[J]. Progress in Materials Science, 2016, 83:383-416. [8] EDUOK U, FAYE O, SZPUNAR J. Recent developments and applications of protective silicone coatings: a review of PDMS functional materials[J]. Progress in Organic Coatings, 2017, 111:124-163. [9] LI Z, QIN J G, CAO Y, et al. Unexpected strong luminescence of polysiloxanes containing carbazolyl and C60 moeities as side chains[J]. Chinese Journal of Chemistry, 2003, 21(6):604-606. [10] RUSU A D, MOLEAVIN I A, HURDUC N, et al. Fluorescent polymeric aggregates for selective response to sarin surrogates[J]. Chemical Communications(Cambridge, England), 2014, 50(69):9965-9968. [11] LIANG Y, XU L X, QU F S, et al. A silicone polymer modified by fluoranthene groups as a new approach for detecting nitroaromatic compounds[J]. Polymer Chemistry, 2019, 10(35):4818-4824. [12] GOU Z M, ZHANG X M, ZUO Y J, et al. Pyrenyl-functionalized polysiloxane based on synergistic effect for highly selective and highly sensitive detection of 4-nitrotoluene[J]. ACS Applied Materials & Interfaces, 2019, 11(33):30218-30227. [13] ZUO Y J, WANG X N, GOU Z M, et al. Step-wise functionalization of polysiloxane towards a versatile dual-response fluorescent probe and elastomer for the detection of H2S in two-photon and NO in near-infrared modes[J]. Chemical Communications, 2020, 56(7):1121-1124. [14] HUDSON Z M, LUNN D J, WINNIK M A, et al. Colour-tunable fluorescent multiblock micellae[J]. Nature Communications, 2014, 5:3372. [15] ZUO Y, YANG T, ZHANG Y, et al. Two-photon fluorescent polysiloxane-based films with thermally responsive self switching properties achieved by a unique reversible spirocyclization mechanism[J]. Chem Sci, 2018, 9(10):2774-2781. [16] ZUO Y J, YANG T X, WANG X N, et al. Visualizing the cell ferroptosis via a novel polysiloxane-based fluorescent schiff base[J]. Sensors and Actuators B: Chemical, 2019, 298:126843. [17] CAO J F, ZUO Y J, LU H, et al. An unconventional chromophore in water-soluble polysiloxanes synthesized via thiol-ene reaction for metal ion detection[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 350:152-163. [18] ZUO Y J, ZHANG Y, GOU Z M, et al. Facile construction of imidazole functionalized polysiloxanes by thiol-ene “Click” reaction for the consecutive detection of Fe3+ and amino acids[J]. Sensors and Actuators B: Chemical, 2019, 291:235-242. [19] LU H, FENG L, LI S, et al. Unexpected strong blue photoluminescence produced from the aggregation of unconventional chromophores in novel siloxane-poly(amidoamine)dendrimers[J]. Macromolecules, 2015, 48(3):476-482. [20] LU H, HU Z Q, FENG S Y. Nonconventional luminescence enhanced by silicone-induced aggregation[J]. Chemistry-An Asian Journal, 2017, 12(11):1213-1217. [21] NIU S, YAN H X, LI S, et al. A multifunctional silicon-containing hyperbranched epoxy: controlled synthesis, toughening bismaleimide and fluorescent properties[J]. Journal of Materials Chemistry C, 2016, 4(28):6881-6893. [22] FENG Y B, BAI T, YAN H X, et al. High fluorescence quantum yield based on the through-space conjugation of hyperbranched polysiloxane[J]. Macromolecules, 2019, 52(8):3075-3082. [23] FENG Y B, YAN H X, DING F, et al. Multiring-induced multicolour emission: hyperbranched polysiloxane with silicon bridge for data encryption[J]. Materials Chemistry Frontiers, 2020, 4(5):1375-1382. [24] BAI L H, YAN H X, BAI T, et al. High fluorescent hyperbranched polysiloxane containing β-cyclodextrin for cell imaging and drug delivery[J]. Biomacromolecules, 2019, 20(11):4230-4240. [25] BAI L H, YAN H X, BAI T, et al. Energy-transfer-induced multiexcitation and enhanced emission of hyperbranched polysiloxane[J]. Biomacromolecules, 2020, 21(9):3724-3735. [26] BUFFA M, CARTURAN S, DEBIJE M G, et al. Dye-doped polysiloxane rubbers for luminescent solar concentrator systems[J]. Solar Energy Materials and Solar Cells, 2012, 103:114-118. [27] SATO K, FUKATA N, HIRAKURI K, et al. Flexible and transparent silicon nanoparticle/polymer composites with stable luminescence[J]. Chemistry-An Asian Journal, 2010, 5(1):50-55. [28] HU G Q, SUN Y Q, ZHUANG J L, et al. Enhancement of fluorescence emission for tricolor quantum dots assembled in polysiloxane toward solar spectrum-simulated white light-emitting devices[J]. Small, 2020, 16(1):1905266. [29] GUO M D, HUANG Y, CAO J F, et al. Luminescent and robust perovskite-silicone elastomers prepared by light induced thiol-ene reaction[J]. Macromolecular Rapid Communications, 2021, 42(5):2000606. [30] MOSCOSO G F, ALMEIDA J, SOUSARAEI A, et al. Luminescent MOF crystals embedded in PMMA/PDMS transparent films as effective NO2 gas sensors[J]. Molecular Systems Design & Engineering, 2020, 5(6):1048-1056. [31] SUN R X, FENG S Y, WANG D X, et al. Fluorescence-tuned silicone elastomers for multicolored ultraviolet light-emitting diodes: realizing the processability of polyhedral oligomeric silsesquioxane-based hybrid porous polymers[J]. Chemistry of Materials, 2018, 30(18):6370-6376. [32] ISLAMOVA R M, DOBRYNIN M V, VLASOV A V, et al. Iridium(iii)-catalysed cross-linking of polysiloxanes leading to the thermally resistant luminescent silicone rubbers[J]. Catalysis Science & Technology, 2017, 7(24):5843-5846. [33] LU H F, YAN B. Attractive sulfonamide bridging bonds constructing lanthanide centered photoactive covalent hybrids[J]. Journal of Non-Crystalline Solids, 2006, 352(50/51):5331-5336. [34] LU H F, YAN B. Molecular design and fluorescent whitening emission from novel lanthanide activated organic-inorganic covalently hybrid micro-particles[J]. Journal of Fluorescence, 2008, 18(5):763-769. [35] LU H F, YAN B. Lanthanide-centered luminescent hybrid microsphere-particles obtained by sol-gel method[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 194(2/3):136-142. [36] ZUO Y J, LU H F, XUE L, et al. Preparation and characterization of luminescent silicone elastomer by thiol-ene “click” chemistry[J]. J Mater Chem C, 2014, 2(15):2724-2734. [37] ZUO Y J, LU H F, XUE L, et al. Polysiloxane-based luminescent elastomers prepared by thiol-ene “click” chemistry[J]. Chemistry-A European Journal, 2014, 20(40):12924-12932. [38] ZUO Y J, CAO J F, FENG S Y. Sunlight-induced cross-linked luminescent films based on polysiloxanes and d-limonene via thiol-ene “click” chemistry[J]. Advanced Functional Materials, 2015, 25(18):2754-2762. [39] WANG Y F, YIN Z M, XIE Z, et al. Polysiloxane functionalized carbon dots and their cross-linked flexible silicone rubbers for color conversion and encapsulation of white LEDs[J]. ACS Applied Materials & Interfaces, 2016, 8(15):9961-9968. [40] 王灯旭,孙瑞雪,冯圣玉,等. 一类荧光硅烷偶联剂及其制备方法与在室温硫化硅橡胶中的应用:中国,108707338 A[P]. 2018-10-26. WANG Dengxu, SUN Ruixue, FENG Shengyu, et al. Fluorescent silane coupling agent and preparation method thereof and application thereof in vulcanization of silicon rubber at room temperature: CN, 108707338 A[P]. 2018-10-26. [41] LIN Y, KOUZNETSOVA T B, CRAIG S L. A latent mechanoacid for time-stamped mechanochromism and chemical signaling in polymeric materials[J]. Journal of the American Chemical Society, 2020, 142(1):99-103. [42] CLOUGH J M, CRETON C, CRAIG S L, et al. Covalent bond scission in the mullins effect of a filled elastomer: real-time visualization with mechanoluminescence[J]. Advanced Functional Materials, 2016, 26(48):9063-9074. [43] GOSSWEILER G R, HEWAGE G B, SORIANO G, et al. Mechanochemical activation of covalent bonds in polymers with full and repeatable macroscopic shape recovery[J]. ACS Macro Letters, 2014, 3(3):216-219. [44] ZUO Y J, ZHANG Y, YANG T X, et al. Polysiloxane-based two-photon fluorescent elastomers with superior mechanical and self-healing properties and their application in bioimaging[J]. New Journal of Chemistry, 2018, 42(17):14281-14289. [45] SONG M M, WANG Y C, ZHANG L, et al. A multifunctional imidazolium-based silicone material with conductivity, self-healing, fluorescence, and stretching sensitivity[J]. Macromolecular Rapid Communications, 2019, 40(23):1900469. [46] 曹新宇, 张榕本, 谢萍, 等. 梯形聚硅氧烷的研究进展[J]. 高分子通报, 2014(12):29-38. CAO Xinyu, ZHANG Rongben, XIE Ping, et al. Research progress of the ladder polysiloxanes(R-LPS)[J]. Polymer Bulletin, 2014(12):29-38. [47] ZHANG J T, CHEN Z Z, FU W X, et al. Supramolecular template-directed synthesis of stable and high-efficiency photoluminescence 9, 10-diphenylanthryl-bridged ladder polysiloxane[J]. Journal of Polymer Science: Part A: Polymer Chemistry, 2010, 48(11):2491-2497. [48] ZHOU Q L, ZHANG J T, REN Z J, et al. A stable and high-efficiency blue-light emitting terphenyl-bridged ladder polysiloxane[J]. Macromolecular Rapid Communications, 2008, 29(14):1259-1263. [49] LIU H H, LIU H Z. Selective dye adsorption and metal ion detection using multifunctional silsesquioxane-based tetraphenylethene-linked nanoporous polymers[J]. Journal of Materials Chemistry A, 2017, 5(19):9156-9162. [50] WANG D X, SUN R X, FENG S Y, et al. Retrieving the original appearance of polyhedral oligomeric silsesquioxane-based porous polymers[J]. Polymer, 2017, 130:218-229. [51] SUN R X, HUO X J, LU H, et al. Recyclable fluorescent paperr sensor for visual detection of nitriaromatic explosives[J]. Sensors and Actuators B: Chemical, 2018, 265:476-487. |
[1] | 高娟,王晓琳,HOFFMANN Heinz,郝京诚. 离子液体凝胶[J]. 《山东大学学报(理学版)》, 2019, 54(1): 1-18. |
[2] | 张耀军,万刚强,颜磊,马庆昌,李东祥,赵继宽. 种子生长法制备ZnO纳米棒组装结构[J]. 山东大学学报(理学版), 2016, 51(1): 14-19. |
[3] | 赵国平,陈国辉 . CTAB/正丁醇/正庚烷/水微乳体系稳定性研究[J]. J4, 2007, 42(11): 19-22 . |
|