您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (2): 78-83.doi: 10.6040/j.issn.1671-9352.0.2021.649

• • 上一篇    

单圈图的邻和可区别边染色

谭钧铭1,强会英1*,王洪申2   

  1. 1. 兰州交通大学数理学院, 甘肃 兰州 730070;2. 兰州理工大学机电工程学院, 甘肃 兰州 730050
  • 发布日期:2022-01-07
  • 作者简介:谭钧铭(1996— ),女, 硕士研究生, 研究方向为图论. E-mail:893977242@qq.com*通信作者简介: 强会英(1968— ), 女, 教授, 硕士, 研究方向为图论及其应用. E-mail:qhy2005ww@126.com
  • 基金资助:
    国家自然科学基金资助项目(61962035,11961041)

Neighbor sum distinguishing edge coloring of unicyclic graphs

TAN Jun-ming1, QIANG Hui-ying1*, WANG Hong-shen2   

  1. 1. College of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China;
    2. School of Mechanical and Electrical Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu, China
  • Published:2022-01-07

摘要: 图G的一个k-正常边染色, 若满足任意两个相邻点的色集合中所有元素之和不同, 则称该染色为图G的一个k-邻和可区别边染色。其中, k的最小值称为图G的邻和可区别边色数。运用分析法与数学归纳法, 研究了单圈图的邻和可区别边色数。

关键词: 单圈图, 邻和可区别边染色, 邻和可区别边色数

Abstract: A proper k-edge coloring of graph G is a k-neighbor sum distinguishing edge coloring if the sum of all elements in the colors sets of any two adjacent vertices is different. The smallest value k is called the neighbor sum distinguishing edge chromatic number of G. The neighbor sum distinguishing edge chromatic numbers of unicyclic graphs are studied by the methods of analysis and mathematical induction.

Key words: unicyclic graph, neighbor sum distinguishing edge coloring, neighbor sum distinguishing edge chromatic number

中图分类号: 

  • O157.5
[1] FLANDRIN E, MARCZYK A, PRZYBYLO J, et al. Neighbor sum distinguishing index[J]. Graphs and Combinatorics, 2013, 29(5):1329-1336.
[2] ZHANG Jianghua, DING Laihao, WANG Guanghui, et al. Neighbor sum distinguishing index of K4-minor free graphs[J]. Graphs and Combinatorics, 2016, 32(4):1621-1633.
[3] 潘文华,徐常青. 无K4-图子式的图的邻和可区别边染色[J]. 数学进展, 2017, 46(6):41-49. PAN Wenhua, XU Changqing. Neighbor sum distinguishing edge colorings of K4-minor free graphs[J]. Advances in Mathematics(China), 2017, 46(6):41-49.
[4] 强会英. 点可区别全色数的一个界[J]. 山东大学学报(理学版), 2011, 46(6):53-56. QIANG Huiying. A bound of the vertex-distinguishing total chromatic number of graphs[J]. Journal of Shandong University(Natural Science), 2011, 46(6):53-56.
[5] 杨笑蕊,强会英,李雨虹. 两类冠图的邻和可区别全染色[J]. 兰州交通大学学报, 2019, 38(5):114-117. YANG Xiaorui, QIANG Huiying, LI Yuhong. Neighbor sum distinguishing total coloring of two types of corona graphs[J]. Journal of Lanzhou Jiaotong University, 2019, 38(5):114-117.
[6] 姚丽,强会英,杨笑蕊. 两类笛卡尔积图的邻和可区别全染色[J]. 兰州交通大学学报, 2020, 39(3):125-129,166. YAO Li, QIANG Huiying, YANG Xiaorui. The neighbor sum distinguishing total coloring of two types cartesian graph[J]. Journal of Lanzhou Jiaotong University, 2020, 39(3):125-129,166.
[7] 王坤,宁文杰,潘向峰. 单圈图及其与完全图联图的全染色[J]. 合肥学院学报(自然科学版), 2012, 22(3):21-23,34. WANG Kun, NING Wenjie, PAN Xiangfeng. On the total coloring of unicyclic graph and the join graph of unicyclic graph and complete graph[J]. Journal of Hefei University(Natural Sciences), 2012, 22(3):21-23,34.
[8] 杨青,田双亮,索郎王青. 无限网格图的邻和可区别边染色[J]. 宁夏师范学院学报, 2018, 39(7):18-21,30. YANG Qing, TIAN Shuangliang, SUO Langwangqing. Neighbor sum distinguishing edge coloring of infinite lattices[J]. Journal of Ningxia Normal University, 2018, 39(7):18-21,30.
[9] 田双亮, 杨环, 杨青, 等. 路的联的邻和可区别边染色[J]. 山东大学学报(理学版), 2020, 55(9):29-35. TIAN Shuangliang, YANG Huan, YANG Qing, et al. Neighbor sum distinguishing edge coloring of the join of paths[J].Journal of Shandong University(Natural Science), 2020, 55(9):29-35.
[10] 潘文华. 若干图的邻和可区别边染色[D]. 天津:河北工业大学, 2016. PAN Wenhua. Neighbor sum distinguishing edge coloring of some graphs[D]. Tianjin: Hebei University of Technology, 2016.
[11] 霍京京. 图的邻点及邻和可区别染色[D]. 苏州:苏州大学, 2017. HUO Jingjing. On neighbor distinguishing coloring and neighbor sum distinguishing coloring of graphs[D]. Suzhou: Soochow University, 2017.
[1] 王笔美,李敬文,顾彦波,邵淑宏. 单圈图的边幻和全标号[J]. 《山东大学学报(理学版)》, 2020, 55(9): 42-50.
[2] 田双亮,杨环,杨青,索郎王青. 路的联的邻和可区别边染色[J]. 《山东大学学报(理学版)》, 2020, 55(9): 29-35.
[3] 潘文华,徐常青. 一类稀疏图的邻和可区别边色数[J]. 山东大学学报(理学版), 2017, 52(8): 94-99.
[4] 蔡华, 苗杰. n阶单圈图的边平均Wiener指标[J]. J4, 2012, 47(10): 70-74.
[5] 秦 健,张 岩 . 单圈图和双圈图的动态色数[J]. J4, 2007, 42(10): 37-40 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!