您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (9): 29-35.doi: 10.6040/j.issn.1671-9352.0.2018.144

• • 上一篇    

路的联的邻和可区别边染色

田双亮1,2,杨环1,杨青1,索郎王青1   

  1. 1.西北民族大学数学与计算机科学学院, 甘肃 兰州 730030;2.西北民族大学动态流数据计算与应用重点实验室, 甘肃 兰州 730030
  • 发布日期:2020-09-17
  • 作者简介:田双亮(1965— ), 男, 硕士, 教授, 研究方向为图论及组合优化. E-mail:sl_tian@163.com
  • 基金资助:
    西北民族大学科研创新团队计划资助,国家民委科研资助项目(14XBZ018)

Neighbor sum distinguishing edge coloring of the join of paths

TIAN Shuang-liang1,2, YANG Huan1, YANG Qing1, SUOLANG Wang-qing1   

  1. 1. School of Mathematics and Computer Science, Northwest Minzu University, Lanzhou 730030, Gansu, China;
    2. Key Laboratory of Streaming Data Computing Technologies and Applications, Northwest Minzu University, Lanzhou 730030, Gansu, China
  • Published:2020-09-17

摘要: 图G的正常[k]-边染色σ是指颜色集合为[k]={1,2,…,k}的G的一个正常边染色。用wσ(x)表示顶点x关联边的颜色之和,即wσ(x)=∑e??綍xσ(e),并称wσ(x)为x关于σ的权。图G的k-邻和可区别边染色是指相邻顶点具有不同权的正常[k]-边染色,最小的k值称为G的邻和可区别边色数,记为χ'(G)。 本文给出了两条不同阶路的联的邻和可区别边色数的精确值。另外, 得到了同阶路的邻和可区别边色数的上界。

关键词: 路, 联, 邻和可区别边染色, 邻和可区别边色数

Abstract: A proper [k]-edge coloring σ of a graph G is a k-proper-edge-coloring of G using colors in [k]={1,2,…,k}, let wσ(x)denote the sum of the colors of edges incident with x, i.e., wσ(x)=∑e??綍xσ(e), and wσ(x)is called the weight of the vertex x with respect to σ. A neighbor sum distinguishing edge coloring σ of G is a proper [k]-edge coloring of G such that no pair adjacent vertices receive the same weight. The smallest value k for which G has such a coloring is called the neighbor sum distinguishing edge chromatic number of G and denoted by χ'(G). The exact values of the neighbor sum distinguishing edge chromatic number of the join of two paths with different orders are given. The upper bound of the neighbor sum distinguishing edge chromatic number of the join of two paths with same orders is obtained.

Key words: path, join, neighbor sum distinguishing edge coloring, neighbor sum distinguishing edge chromatic number

中图分类号: 

  • O157.5
[1] ZHANG Z F, LIU L Z, WANG J F. Adjacent strong edge coloring of graphs[J]. Applied Mathematics Letters, 2002, 15(5):623-626.
[2] FLANDRIN E, MARCZYK A, PRZYBYŁO J, et al. Neighbor sum distinguishing index[J]. Graphs and Combinatorics, 2013, 29(5):1329-1336.
[3] DONG A J, WANG G H, ZHANG J H. Neighbor sum distinguishing edge colorings of graphs with bounded maximum average degree[J]. Discrete Applied Mathematics, 2014, 166(4):84-90.
[4] HU X L, CHEN Y J, LUO R, et al. Neighbor sum distinguishing edge colorings of sparse graphs[J]. Discrete Applied Mathematics, 2015, 193:119-125.
[5] YU X W, GAO Y P, DING L H. Neighbor sum distinguishing chromatic index of sparse graphs via the combinatorial Nullstellensatz[J]. Acta Mathematicae Applicatae Sinica, English Series, 2018, 34(1):135-144.
[6] YU X W, WANG G H, WU J L, et al. Neighbor sum distinguishing edge coloring of subcubic graphs[J]. Acta Mathematica Sinica, English Series, 2017, 33(2):252-262.
[7] GAO Y P, WANG G H, WU J L. Neighbor sum distinguishing edge colorings of graphs with small maximum average degree[J]. Bulletin of the Malaysian Mathematical Sciences Society, 2016, 39(S1):247-256.
[8] HOCQUARD H, PRZYBYŁO J. On the neighbour sum distinguishing index of graphs with bounded maximum average degree[J]. Graphs and Combinatorics, 2017, 33(6):1459-1471.
[9] QIU B J, WANG J H, LIU Y. Neighbor sum distinguishing colorings of graphs with maximum average degree less than(37)/(12)[J]. Acta Mathematica Sinica, English Series, 2018, 34(2):265-274.
[10] HU X L, CHEN Y J, LUO R, et al. Neighbor sum distinguishing index of 2-degenerate graphs[J]. Journal of Combinatorial Optimization, 2017, 34(3):798-809.
[11] ZHANG J H, DING L H, WANG G H, et al. Neighbor sum distinguishing index of K4 -minor free graphs[J]. Graphs and Combinatorics, 2016, 32(4):1621-1633.
[12] BONDY J A, MURTY U S R. Graph theory with applications[M]. London: Macmillan Education UK, 1976.
[1] 杨亚茹, 王永庆, 张志斌, 刘悦, 程学旗. 基于多元信息融合的用户关联模型[J]. 《山东大学学报(理学版)》, 2019, 54(9): 105-113.
[2] 程晓云,辛小龙. 超相等代数的强超推理系统[J]. 《山东大学学报(理学版)》, 2019, 54(8): 14-19.
[3] 王维忠,周琨强. 混合图的埃尔米特-关联能量[J]. 《山东大学学报(理学版)》, 2019, 54(6): 53-58.
[4] 陈林. 一类N-Kirchhoff方程正解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(10): 40-48.
[5] 陈丽珍,冯晓晶,李刚. 一类Schrödinger-Poisson系统非平凡解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(10): 74-78.
[6] 张申贵. 一类基尔霍夫型微分系统的周期解[J]. 《山东大学学报(理学版)》, 2019, 54(10): 1-6.
[7] 严倩,王礼敏,李寿山,周国栋. 结合新闻和评论文本的读者情绪分类方法[J]. 山东大学学报(理学版), 2018, 53(9): 35-39.
[8] 于晓丹,董丽,吴聪,孔祥智. 软关联环[J]. 山东大学学报(理学版), 2018, 53(4): 31-35.
[9] 王峰,曼媛,王幸乐. 基于人工免疫的N最短路径检索算法[J]. 山东大学学报(理学版), 2017, 52(9): 35-40.
[10] 王丽丽,陈峥立. 关于Wigner-Yanase-Dyson斜信息的一些研究[J]. 山东大学学报(理学版), 2017, 52(8): 43-47.
[11] 潘文华,徐常青. 一类稀疏图的邻和可区别边色数[J]. 山东大学学报(理学版), 2017, 52(8): 94-99.
[12] 李丽,管涛,林和. 基于泛系算子的泛系混合并联粗糙集模型[J]. 山东大学学报(理学版), 2017, 52(7): 22-29.
[13] 陈祥恩,苗婷婷,王治文. 两条路的联图的点可区别I-全染色[J]. 山东大学学报(理学版), 2017, 52(4): 30-33.
[14] 刘旭东,潘旭林,张量. 具有半对称度量联络拟常曲率空间中子流形的Casorati曲率不等式[J]. 山东大学学报(理学版), 2017, 52(2): 55-59.
[15] 何国庆,张量,刘海蓉. 具有半对称度量联络的广义Sasakian空间形式中的子流形的Chen-Ricci不等式[J]. 山东大学学报(理学版), 2017, 52(10): 56-63.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!