《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (10): 74-78.doi: 10.6040/j.issn.1671-9352.0.2018.638
• • 上一篇
陈丽珍1,冯晓晶2,李刚3
CHEN Li-zhen1, FENG Xiao-jing2, LI Gang3
摘要: 利用变分方法和临界点理论,研究了一类Schrödinger-Poisson系统,其中泊松项为更一般的形式,通过给非线性项加拟临界增长和AR条件,得到了该系统非平凡解的存在性。补充和推广了以往研究Schrödinger-Poisson系统的相关结果。
中图分类号:
[1] ILLNER R, ZWEIFEL P F, LANGE H. Global existence,uniqueness and asymptotic behaviour of solutions of the Wigner-Poisson and Schrödinger-Poisson systems[J]. Mathematical Methods in the Applied Sciences, 1994,17(5):349-376. [2] NIER F. A stationary Schrödinger-Poisson system arising from the modelling of electronic devices[J]. Forum Mathematicum, 1990, 2(5):489-510. [3] LI Fuyi, LI Yuhua, SHI Junping. Existence of positive solutions to Schrödinger-Poisson type systems with critical exponent[J]. Communications in Contemporary Mathematics, 2014, 16(6):1-29. [4] LI Yuhua, LI Fuyi, SHI Junping. Existence and multiplicity of positive solutions to Schrödinger-Poisson type systems with critical nonlocal term[J]. Calculus of Variations, 2017, 56(134):1-17. [5] MAO Anmin, YANG Lijuan, QIAN Aixia, et al. Existence and concentration of solutions of Schrödinger-Poisson system[J]. Applied Mathematics Letters, 2017, 68:8-12. [6] 叶一蔚, 唐春雷. 带有超线性项或次线性项的Schrödinger-Poisson系统解的存在性和多重性[J]. 数学物理学报, 2015, 35A(4):668-682. YE Yiwei, TANG Chunlei. Existence and multiplicity results for Schrödinger-Poisson system with superlinear or sublinear terms[J]. Acta Mathematica Scientia, 2015, 35(A):668-682. [7] 毛安民, 李安然. 薛定谔方程及薛定谔-麦克斯韦方程的多解[J]. 数学学报, 2012, 55(3):425-436. MAO Anmin, LI Anran. Multiplicity of solutions for a Schrödinger equation and a Schrödinger-Maxwell equation[J]. Acta Mathematica Sinica, Chinese Series, 2012, 55(3):425-436. [8] WILLE M. Minimax theorems: progress in nonlinear differential equations and their applications[M]. Boston: Birkhäuser, 1996. [9] BARTSCH T, WANG Zhiqiang. Existence and multiple results for some superlinear elliptic problems on RN[J]. Communication in Partial Differential Equations, 1995, 20:1725-1741. [10] RABINOWITZ P H. Minimax methods in critical point theory with applications to differential equations[M]. Providence, RI: AMS, 1986. [11] BARTOLO P, BENCI V, FORTUNATO D. Abstract critical point theorems and applications to some nonlinear problem with strong resonance at infinity[J]. Nonlinear Analysis, 1983, 7:981-1012. |
[1] | 吴忆佳,成荣. 一类Schrödinger方程的无穷多非平凡解[J]. 《山东大学学报(理学版)》, 2019, 54(2): 84-88. |
[2] | 张申贵. 一类基尔霍夫型微分系统的周期解[J]. 《山东大学学报(理学版)》, 2019, 54(10): 1-6. |
[3] | 陈林. 一类N-Kirchhoff方程正解的存在性[J]. 《山东大学学报(理学版)》, 2019, 54(10): 40-48. |
[4] | 黄爱玲,林帅. 局部量子Bernoulli噪声意义下的随机Schrödinger方程的有限维逼近[J]. 山东大学学报(理学版), 2017, 52(12): 67-71. |
[5] | 马洁,潘振宽*,魏伟波,国凯. 含Euler弹性项图像修复变分模型的快速Split Bregman算法[J]. J4, 2013, 48(05): 70-77. |
[6] | 潘振宽,魏伟波,张海涛 . 基于梯度和拉普拉斯算子的图像扩散变分模型[J]. J4, 2008, 43(11): 11-16 . |
|