《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (1): 40-47.doi: 10.6040/j.issn.1671-9352.1.2021.048
• • 上一篇
赖华1,2,张恒滔1,2,线岩团1,2*,黄于欣1,2
LAI Hua1,2, ZHANG Heng-tao1,2, XIAN Yan-tuan1,2*, HUANG Yu-xin1,2
摘要: 相似案例匹配任务旨在判断2篇裁判文书所描述的案件是否相似,通常被看作裁判文书的文本匹配问题,在司法审判过程中具有重要的应用。现有深度学习模型大多将案例长文本编码为单一向量表示,模型很难从长文本中学习到裁判文书之间的细微差异。考虑到案例文本各部分的内容较为固定,本文提出将案例长文本拆分为多个片断并分别编码,以便获取不同部分的细微特征;同时,采用可学习仿射变换改进相似度打分模块,使模型学习到了更多细微的差异,进一步提高了案例匹配的性能。在CAIL2019-SCM数据集上的实验结果表明,本文提出方法与现有方法相比准确率提升了1.89%。
中图分类号:
[1] HALL P A V, DOWLING G R. Approximate string matching[J]. ACM Computing Surveys(CSUR), 1980, 12(4):381-402. [2] SALTON G, BUCKLEY C. Term-weighting approaches in automatic text retrieval[J]. Information Processing & Management, 1988, 24(5):513-523. [3] HUANG C H, YIN J, HOU F. A text similarity measurement combining word semantic information with TF-IDF method[J]. Chinese Journal of Computers, 2011, 34(5):856-864. [4] NIRAULA N, BANJADE R, ??塁TEFANESCU D, et al. Experiments with semantic similarity measures based on LDA and LSA[C] //Proceedings of the First International Conference on Statistical Language and Speech Processing. Berlin: Springer, 2013: 188-199. [5] WANG Z Z, HE M, DU Y P. Text similarity computing based on topic model LDA[J]. Computer Science, 2013, 40(12):229-232. [6] MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[EB/OL].(2013-09-07)[2021-07-01]. https://arxiv. org/abs/1301.3781.pdf. [7] LE Q, MIKOLOV T. Distributed representations of sentences and documents[C] //Proceedings of the 31st International Conference on Machine Learning. Beijing: JMLR, 2014: 1188-1196. [8] MUELLER J, THYAGARAJAN A. Siamese recurrent architectures for learning sentence similarity[C] //Proceedings of the AAAI Conference on Artificial Intelligence. Arizona: AAAI Press, 2016, 30(1):2786-2792. [9] REIMERS N, GUREVYCH I. Sentence-BERT: sentence embeddings using siamese BERT-networks[C] //Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing(EMNLP-IJCNLP). Hong Kong:Association for Computational Linguistics, 2019(1):3980-3990. [10] DEVLIN Jacob, CHANG Ming-wei, LEE Kenton, et al. BERT: pre-training of deep bidirectional transformers for language understanding.[C] //Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Long and Short Papers. Minneapolis: Association for Computational Linguistics, 2018: 4171-4186. [11] WANG Z, HAMZA W, FLORIAN R. Bilateral multi-perspective matching for natural language sentences[C] //Proceedings of Twenty-sixth International Joint Conference on Artificial Intelligence. Melbourne: IJCAI, 2017: 4144-4150. [12] CHEN Z, ZHANG H, ZHANG X, et al. Quora question pairs[EB/OL].(2018-05-25)[2021-07-01]. http://static.hongbozhang.me/doc/STAT_441_Report.pdf. [13] YANG Y, YIH W, MEEK C. Wikiqa: a challenge dataset for open-domain question answering[C] //Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Lisbon: The Association for Computational Linguistics, 2015: 2013-2018. [14] XIAO C, ZHONG H, GUO Z. CAIL2019-SCM: a dataset of similar case matching in legal domain[EB/OL].(2019-09-25)[2021-07-01]. https://arxiv.org/abs/1911.08962.pdf. [15] HUANG P S, HE X, GAO J, et al. Learning deep structured semantic models for web search using clickthrough data[C] //Proceedings of the 22nd ACM International Conference on Information & Knowledge Management. San Francisco: ACM, 2013: 2333-2338. [16] CHOPRA S, HADSELL R, LECUN Y. Learning a similarity metric discriminatively, with application to face verification[C] //Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition(CVPR'05). San Diego: IEEE, 2005: 539-546. [17] SHEN Y, HE X, GAO J, et al. A latent semantic model with convolutional-pooling structured for information retrieval[C] //Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management. Shanghai: CIKM, 2014: 101-110. [18] CHEN Q, ZHU X, LING Z, et al. Enhanced LSTM for natural language inference[C] //Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. Vancouver: ACL, 2017: 1657-1668. [19] ROCKTÄSCHEL T, GREFENSTETTE E, HERMANN K M, et al. Reasoning about entailment with neural attention[C] //Proceedings of 2016 International Conference on Learning Representations. San Juan: ICLR, 2016. [20] SHAO Y, MAO J, LIU Y, et al. BERT-PLI: modeling paragraph-level interactions for legal case retrieval[C] //Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI-20. Yokohama: The Association for Computational Linguistics, 2020: 3501-3507. [21] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C] //Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: NIPS, 2017: 5998-6008. [22] DING S, SHANG J, WANG S, et al. ERNIE-DOC: the retrospective long-document modeling transformer[J/OL]. arXiv, 2020, https://arxiv.org/abs/2012.15688.pdf. [23] HONG Z, ZHOU Q, ZHANG R, et al. Legal feature enhanced semantic matching network for similar case matching[C] //Proceedings of 2020 International Joint Conference on Neural Networks(IJCNN). Glasgow: IEEE, 2020: 1-8. |
[1] | 阴爱英,林建洲,吴运兵,廖祥文. 融合图卷积神经网络的文本情感分类[J]. 《山东大学学报(理学版)》, 2021, 56(11): 15-23. |
[2] | 银温社,贺建峰. 基于深度学习的眼底图像出血点检测方法[J]. 《山东大学学报(理学版)》, 2020, 55(9): 62-71. |
[3] | 李妮,关焕梅,杨飘,董文永. 基于BERT-IDCNN-CRF的中文命名实体识别方法[J]. 《山东大学学报(理学版)》, 2020, 55(1): 102-109. |
[4] | 刘洋,赵科军,葛连升,刘恒. 一种基于深度学习的快速DGA域名分类算法[J]. 《山东大学学报(理学版)》, 2019, 54(7): 106-112. |
[5] | 王文卿,撖奥洋,于立涛,张智晟. 自编码器与PSOA-CNN结合的短期负荷预测模型[J]. 《山东大学学报(理学版)》, 2019, 54(7): 50-56. |
[6] | 刘明明,张敏情,刘佳,高培贤. 一种基于浅层卷积神经网络的隐写分析方法[J]. 山东大学学报(理学版), 2018, 53(3): 63-70. |
[7] | 张芳芳,曹兴超. 基于字面和语义相关性匹配的智能篇章排序[J]. 山东大学学报(理学版), 2018, 53(3): 46-53. |
[8] | 秦静,林鸿飞,徐博. 基于示例语义的音乐检索模型[J]. 山东大学学报(理学版), 2017, 52(6): 40-48. |
|