《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (7): 50-56.doi: 10.6040/j.issn.1671-9352.0.2018.715
Wen-qing WANG1(),Ao-yang HAN2,Li-tao YU2,Zhi-sheng ZHANG1,*()
摘要:
提出了一种自编码器与PSO算法优化卷积神经网络结合的电力系统短期负荷预测模型。首先利用自编码器对相关变量数据进行处理,降低所需数据的噪声变量,提高预测效率;然后利用粒子群算法对卷积神经网络的权值和阈值进行优化,可有效提高预测模型的预测精度和预测速度。通过对实际电网的负荷数据进行仿真,验证了模型具有较高的预测精度。
中图分类号:
1 |
王惠中, 周佳, 刘轲. 电力系统短期负荷预测方法研究综述[J]. 电气自动化, 2015, 37 (1): 1- 3.
doi: 10.3969/j.issn.1000-3886.2015.01.001 |
WANG Huizhong , ZHOU Jia , LIU Ke . Summary of research on the short-term load forecasting method of the electric power system[J]. Electrical Automation, 2015, 37 (1): 1- 3.
doi: 10.3969/j.issn.1000-3886.2015.01.001 |
|
2 | 朱振伟.气象因素对电网负荷特性影响的研究[D].杭州:浙江大学, 2008. |
ZHU Zhenwei. Study on the influence of weather factors on power grid load characteristics[D]. Hangzhou: Zhejiang University, 2008. | |
3 | 黄芸.基于神经网络的短期电力负荷预测模型研究[D].天津:天津大学, 2011. |
HUANG Yun. Research on short-term power load forecasting model based on neural network[D]. Tianjin: Tianjin University, 2011. | |
4 |
张前进. 基于支持向量机回归的电力负荷预测研究[J]. 航空计算技术, 2006, 36 (4): 105- 107.
doi: 10.3969/j.issn.1671-654X.2006.04.029 |
ZHANG Qianjin . Research on electric-power load forecasting based on support vector machine regression technique[J]. Aeronautical Computing Technique, 2006, 36 (4): 105- 107.
doi: 10.3969/j.issn.1671-654X.2006.04.029 |
|
5 |
杨帆, 吴耀武, 熊信银, 等. 用自适应模糊推理系统预测电力短期负荷[J]. 高电压技术, 2007, 33 (4): 129- 133.
doi: 10.3969/j.issn.1003-6520.2007.04.033 |
YANG Fan , WU Yaowu , XIONG Xinyin , et al. Short-term load forecasting in power system based on adaptive network-based fuzzy inference system[J]. High Voltage Engineering, 2007, 33 (4): 129- 133.
doi: 10.3969/j.issn.1003-6520.2007.04.033 |
|
6 |
邰能灵, 侯志俭. 小波模糊神经网络在电力系统短期负荷预测中的应用[J]. 中国电机工程学报, 2004, 24 (1): 24- 29.
doi: 10.3321/j.issn:0258-8013.2004.01.005 |
TAI Nengling , HOU Zhijian . New short-term load forecasting principle with the wavelet transform fuzzy neural network for the power systems[J]. Proceedings of the CSEE, 2004, 24 (1): 24- 29.
doi: 10.3321/j.issn:0258-8013.2004.01.005 |
|
7 |
张军阳, 王慧丽, 郭阳, 等. 深度学习相关研究综述[J]. 计算机应用研究, 2018, 35 (7): 1921- 1928, 1936.
doi: 10.3969/j.issn.1001-3695.2018.07.001 |
ZHANG Junyang , WANG Huili , GUO Yang , et al. Review of deep learning[J]. Application Research of Computers, 2018, 35 (7): 1921- 1928, 1936.
doi: 10.3969/j.issn.1001-3695.2018.07.001 |
|
8 | HOSEIN S, HOSEIN P. Load forecasting using deep neural networks[C]//Power & Energy Society Innovative Smart Grid Technologies Conference. Washington: IEEE, 2017. |
9 | MOCANU D C , BOU AMMAR H , LOWET D , et al. Factored four way conditional restricted Boltzmann machines for activity recognition[J]. Pattern Recognition Letters, 2015, 66 (C): 100- 108. |
10 | 陈先昌.基于卷积神经网络的深度学习算法与应用研究[D].杭州:浙江工商大学, 2014. |
CHEN Xianchang. Research on algorithm and application of deep learning based on convolutional neural network[D]. Hangzhou: Zhejiang Gongshang University, 2014. | |
11 | 程宇也.基于人工神经网络的短期电力负荷预测研究[D].杭州:浙江大学, 2017. |
CHENG Yuye. Short-term electricity demand forecasting based on artificial neural network[D]. Hangzhou: Zhejiang University, 2017. | |
12 |
牛东晓, 马天男, 王海潮, 等. 基于KPCA和NSGAⅡ优化CNN参数的电动汽车充电站短期负荷预测[J]. 电力建设, 2017, 38 (3): 85- 92.
doi: 10.3969/j.issn.1000-7229.2017.03.012 |
NIU Dongxiao , MA Tiannan , WANG Haichao , et al. Short-term load forecasting of electric vehicle charging station based on KPCA and CNN parameters optimized by NSGAⅡ[J]. Electric Power Construction, 2017, 38 (3): 85- 92.
doi: 10.3969/j.issn.1000-7229.2017.03.012 |
|
13 | 张贵勇.改进的卷积神经网络在金融预测中的应用研究[D].郑州:郑州大学, 2016. |
ZHANG Guiyong. Research on the application of improved convolutional neural network in financial forecasting[D]. Zhengzhou: Zhengzhou University, 2016. | |
14 |
李思琴, 林磊, 孙承杰. 基于卷积神经网络的搜索广告点击率预测[J]. 智能计算机与应用, 2015, 31 (5): 22- 25.
doi: 10.3969/j.issn.2095-2163.2015.05.007 |
LI Siqin , LIN Lei , SUN Chengjie . Search advertisement click through rate prediction based on convolutional neural network[J]. Intelligent Computer and Applications, 2015, 31 (5): 22- 25.
doi: 10.3969/j.issn.2095-2163.2015.05.007 |
|
15 |
何明慧, 徐怡, 王冉, 等. 改进的粒子群算法优化神经网络及应用[J]. 计算机工程与应用, 2018, 54 (19): 107- 113.
doi: 10.3778/j.issn.1002-8331.1706-0206 |
HE Minghui , XU Yi , WANG Ran , et al. Combination dynamic inertia weight particle swarm optimization algorithm to optimize neural network and application[J]. Computer Engineering and Applications, 2018, 54 (19): 107- 113.
doi: 10.3778/j.issn.1002-8331.1706-0206 |
|
16 |
吴杰康, 陈明华, 陈国通. 基于PSO的模糊神经网络短期负荷预测[J]. 电力系统及其自动化学报, 2007, 19 (1): 63- 67.
doi: 10.3969/j.issn.1003-8930.2007.01.012 |
WU Jiekang , CHEN Minghua , CHEN Guotong . Fuzzy neural network model based on particle swarm optimization for short-term load forecasting[J]. Proceedings of the CSU-EPSA, 2007, 19 (1): 63- 67.
doi: 10.3969/j.issn.1003-8930.2007.01.012 |
|
17 | 王倩, 张智晟, 王帅, 等. 基于PSO-RNN的光伏发电功率预测研究[J]. 青岛大学学报(工程技术版), 2014, 29 (4): 40- 43. |
WANG Qian , ZHANG Zhisheng , WANG Shuai , et al. Study of power forecasting of photovoltaic based on PSO-RNN[J]. Journal of Qingdao University (Engineering & Technology Edition), 2014, 29 (4): 40- 43. | |
18 | 金士琛, 薛会, 林霞, 等. 基于FDNN的电力系统短期负荷预测模型研究[J]. 青岛大学学报(工程技术版), 2017, 32 (4): 12- 16. |
JIN Shichen , XUE Hui , LIN Xia , et al. Study of short-term load forecasting of power system based on fuzzy deep neural network[J]. Journal of Qingdao University(Engineering & Technology Edition), 2017, 32 (4): 12- 16. | |
19 | 邓俊锋, 张晓龙. 基于自动编码器组合的深度学习优化方法[J]. 计算机应用, 2016, 36 (3): 697- 702. |
DENG Junfeng , ZHANG Xiaolong . Deep learning algorithm optimization based on combination of auto-encoders[J]. Journal of Computer Applications, 2016, 36 (3): 697- 702. | |
20 | 王雅思, 姚鸿勋, 孙晓帅, 等. 深度学习中的自编码器的表达能力研究[J]. 计算机科学, 2015, 42 (9): 56- 60. |
WANG Yasi , YAO Hongxun , SUN Xiaoshuai , et al. Representation ability research of auto-encoders in deep learning[J]. Computer Science, 2015, 42 (9): 56- 60. |
[1] | 张芳芳,曹兴超. 基于字面和语义相关性匹配的智能篇章排序[J]. 山东大学学报(理学版), 2018, 53(3): 46-53. |
[2] | 秦静,林鸿飞,徐博. 基于示例语义的音乐检索模型[J]. 山东大学学报(理学版), 2017, 52(6): 40-48. |
[3] | 马兰,李伟岸,尹天懿. 基于变邻域搜索改进的冲突解脱粒子群算法[J]. 山东大学学报(理学版), 2017, 52(1): 23-28. |
[4] | 万智萍1,吕志民1,2*. 一种自适应物种寻优的无线Mesh网络QoS路由算法[J]. J4, 2013, 48(09): 10-16. |
[5] | 李彬1,2,李贻斌1,荣学文1. ELM-RBF神经网络的智能优化策略[J]. J4, 2010, 45(5): 48-51. |
[6] | 吴瑞海 董吉文 段琪庆. 变尺度混沌粒子群与小波的地基沉降预测应用[J]. J4, 2009, 44(11): 75-78. |
[7] | 张国英,沙 芸,江慧娜 . 基于粒子群优化的快速KNN分类算法[J]. J4, 2006, 41(3): 34-36 . |
|