您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (7): 50-56.doi: 10.6040/j.issn.1671-9352.0.2018.715

•   • 上一篇    下一篇

自编码器与PSOA-CNN结合的短期负荷预测模型

王文卿1(),撖奥洋2,于立涛2,张智晟1,*()   

  1. 1. 青岛大学电气工程学院, 山东 青岛 266071
    2. 国网青岛供电公司, 山东 青岛 266002
  • 收稿日期:2018-12-12 出版日期:2019-07-20 发布日期:2019-06-27
  • 通讯作者: 张智晟 E-mail:517660558@qq.com;slnzzs@126.com
  • 作者简介:王文卿(1995—),女,硕士研究生,研究方向为电力系统短期负荷预测.E-mail:517660558@qq.com
  • 基金资助:
    国家自然科学基金资助项目(51477078)

Short-term load forecasting model based on autoencoder and PSOA-CNN

Wen-qing WANG1(),Ao-yang HAN2,Li-tao YU2,Zhi-sheng ZHANG1,*()   

  1. 1. College of Electrical Engineering, Qingdao University, Qingdao 266071, Shandong, China
    2. Qingdao Electric Power Company of State Grid, Qingdao 266002, Shandong, China
  • Received:2018-12-12 Online:2019-07-20 Published:2019-06-27
  • Contact: Zhi-sheng ZHANG E-mail:517660558@qq.com;slnzzs@126.com
  • Supported by:
    国家自然科学基金资助项目(51477078)

摘要:

提出了一种自编码器与PSO算法优化卷积神经网络结合的电力系统短期负荷预测模型。首先利用自编码器对相关变量数据进行处理,降低所需数据的噪声变量,提高预测效率;然后利用粒子群算法对卷积神经网络的权值和阈值进行优化,可有效提高预测模型的预测精度和预测速度。通过对实际电网的负荷数据进行仿真,验证了模型具有较高的预测精度。

关键词: 卷积神经网络, 自编码器, 粒子群优化算法, 短期负荷预测

Abstract:

A short-term load forecasting model which combines the autoencoder and convolutional neural network optimized by particle swarm optimization is proposed. Firstly, the autoencoder is used to process the relevant variable data, reduce the noise variable of the required data, and improve the prediction efficiency. Then particle swarm optimization is used to optimize the weight and threshold of the convolutional neural network., which can effectively improve the prediction accuracy and prediction speed of the prediction model. By simulating the load data of the actual power grid, it is verified that the proposed model has higher prediction accuracy.

Key words: convolutional neural network, autoencode, particle swarm optimization, short-term load forecasting

中图分类号: 

  • TM715

图1

CNN结构图"

图2

自编码器与PSOA-CNN结合的短期负荷预测流程"

图3

2种负荷预测模型误差曲线对比图"

表1

预测性能结果比较"

模型平均绝对误差/%最大相对误差/%
常规CNN3.9310.12
自编码器与PSOA-CNN结合1.875.95

表2

2种模型预测误差统计(7 d)"

日期平均绝对误差/%最大相对误差/%
模型1模型2模型1模型2
14.252.0110.486.31
23.931.8710.125.95
33.251.339.254.78
43.161.529.444.14
53.371.198.704.25
63.672.068.896.19
74.312.2910.956.72
平均值3.701.769.695.47
1 王惠中, 周佳, 刘轲. 电力系统短期负荷预测方法研究综述[J]. 电气自动化, 2015, 37 (1): 1- 3.
doi: 10.3969/j.issn.1000-3886.2015.01.001
WANG Huizhong , ZHOU Jia , LIU Ke . Summary of research on the short-term load forecasting method of the electric power system[J]. Electrical Automation, 2015, 37 (1): 1- 3.
doi: 10.3969/j.issn.1000-3886.2015.01.001
2 朱振伟.气象因素对电网负荷特性影响的研究[D].杭州:浙江大学, 2008.
ZHU Zhenwei. Study on the influence of weather factors on power grid load characteristics[D]. Hangzhou: Zhejiang University, 2008.
3 黄芸.基于神经网络的短期电力负荷预测模型研究[D].天津:天津大学, 2011.
HUANG Yun. Research on short-term power load forecasting model based on neural network[D]. Tianjin: Tianjin University, 2011.
4 张前进. 基于支持向量机回归的电力负荷预测研究[J]. 航空计算技术, 2006, 36 (4): 105- 107.
doi: 10.3969/j.issn.1671-654X.2006.04.029
ZHANG Qianjin . Research on electric-power load forecasting based on support vector machine regression technique[J]. Aeronautical Computing Technique, 2006, 36 (4): 105- 107.
doi: 10.3969/j.issn.1671-654X.2006.04.029
5 杨帆, 吴耀武, 熊信银, 等. 用自适应模糊推理系统预测电力短期负荷[J]. 高电压技术, 2007, 33 (4): 129- 133.
doi: 10.3969/j.issn.1003-6520.2007.04.033
YANG Fan , WU Yaowu , XIONG Xinyin , et al. Short-term load forecasting in power system based on adaptive network-based fuzzy inference system[J]. High Voltage Engineering, 2007, 33 (4): 129- 133.
doi: 10.3969/j.issn.1003-6520.2007.04.033
6 邰能灵, 侯志俭. 小波模糊神经网络在电力系统短期负荷预测中的应用[J]. 中国电机工程学报, 2004, 24 (1): 24- 29.
doi: 10.3321/j.issn:0258-8013.2004.01.005
TAI Nengling , HOU Zhijian . New short-term load forecasting principle with the wavelet transform fuzzy neural network for the power systems[J]. Proceedings of the CSEE, 2004, 24 (1): 24- 29.
doi: 10.3321/j.issn:0258-8013.2004.01.005
7 张军阳, 王慧丽, 郭阳, 等. 深度学习相关研究综述[J]. 计算机应用研究, 2018, 35 (7): 1921- 1928, 1936.
doi: 10.3969/j.issn.1001-3695.2018.07.001
ZHANG Junyang , WANG Huili , GUO Yang , et al. Review of deep learning[J]. Application Research of Computers, 2018, 35 (7): 1921- 1928, 1936.
doi: 10.3969/j.issn.1001-3695.2018.07.001
8 HOSEIN S, HOSEIN P. Load forecasting using deep neural networks[C]//Power & Energy Society Innovative Smart Grid Technologies Conference. Washington: IEEE, 2017.
9 MOCANU D C , BOU AMMAR H , LOWET D , et al. Factored four way conditional restricted Boltzmann machines for activity recognition[J]. Pattern Recognition Letters, 2015, 66 (C): 100- 108.
10 陈先昌.基于卷积神经网络的深度学习算法与应用研究[D].杭州:浙江工商大学, 2014.
CHEN Xianchang. Research on algorithm and application of deep learning based on convolutional neural network[D]. Hangzhou: Zhejiang Gongshang University, 2014.
11 程宇也.基于人工神经网络的短期电力负荷预测研究[D].杭州:浙江大学, 2017.
CHENG Yuye. Short-term electricity demand forecasting based on artificial neural network[D]. Hangzhou: Zhejiang University, 2017.
12 牛东晓, 马天男, 王海潮, 等. 基于KPCA和NSGAⅡ优化CNN参数的电动汽车充电站短期负荷预测[J]. 电力建设, 2017, 38 (3): 85- 92.
doi: 10.3969/j.issn.1000-7229.2017.03.012
NIU Dongxiao , MA Tiannan , WANG Haichao , et al. Short-term load forecasting of electric vehicle charging station based on KPCA and CNN parameters optimized by NSGAⅡ[J]. Electric Power Construction, 2017, 38 (3): 85- 92.
doi: 10.3969/j.issn.1000-7229.2017.03.012
13 张贵勇.改进的卷积神经网络在金融预测中的应用研究[D].郑州:郑州大学, 2016.
ZHANG Guiyong. Research on the application of improved convolutional neural network in financial forecasting[D]. Zhengzhou: Zhengzhou University, 2016.
14 李思琴, 林磊, 孙承杰. 基于卷积神经网络的搜索广告点击率预测[J]. 智能计算机与应用, 2015, 31 (5): 22- 25.
doi: 10.3969/j.issn.2095-2163.2015.05.007
LI Siqin , LIN Lei , SUN Chengjie . Search advertisement click through rate prediction based on convolutional neural network[J]. Intelligent Computer and Applications, 2015, 31 (5): 22- 25.
doi: 10.3969/j.issn.2095-2163.2015.05.007
15 何明慧, 徐怡, 王冉, 等. 改进的粒子群算法优化神经网络及应用[J]. 计算机工程与应用, 2018, 54 (19): 107- 113.
doi: 10.3778/j.issn.1002-8331.1706-0206
HE Minghui , XU Yi , WANG Ran , et al. Combination dynamic inertia weight particle swarm optimization algorithm to optimize neural network and application[J]. Computer Engineering and Applications, 2018, 54 (19): 107- 113.
doi: 10.3778/j.issn.1002-8331.1706-0206
16 吴杰康, 陈明华, 陈国通. 基于PSO的模糊神经网络短期负荷预测[J]. 电力系统及其自动化学报, 2007, 19 (1): 63- 67.
doi: 10.3969/j.issn.1003-8930.2007.01.012
WU Jiekang , CHEN Minghua , CHEN Guotong . Fuzzy neural network model based on particle swarm optimization for short-term load forecasting[J]. Proceedings of the CSU-EPSA, 2007, 19 (1): 63- 67.
doi: 10.3969/j.issn.1003-8930.2007.01.012
17 王倩, 张智晟, 王帅, 等. 基于PSO-RNN的光伏发电功率预测研究[J]. 青岛大学学报(工程技术版), 2014, 29 (4): 40- 43.
WANG Qian , ZHANG Zhisheng , WANG Shuai , et al. Study of power forecasting of photovoltaic based on PSO-RNN[J]. Journal of Qingdao University (Engineering & Technology Edition), 2014, 29 (4): 40- 43.
18 金士琛, 薛会, 林霞, 等. 基于FDNN的电力系统短期负荷预测模型研究[J]. 青岛大学学报(工程技术版), 2017, 32 (4): 12- 16.
JIN Shichen , XUE Hui , LIN Xia , et al. Study of short-term load forecasting of power system based on fuzzy deep neural network[J]. Journal of Qingdao University(Engineering & Technology Edition), 2017, 32 (4): 12- 16.
19 邓俊锋, 张晓龙. 基于自动编码器组合的深度学习优化方法[J]. 计算机应用, 2016, 36 (3): 697- 702.
DENG Junfeng , ZHANG Xiaolong . Deep learning algorithm optimization based on combination of auto-encoders[J]. Journal of Computer Applications, 2016, 36 (3): 697- 702.
20 王雅思, 姚鸿勋, 孙晓帅, 等. 深度学习中的自编码器的表达能力研究[J]. 计算机科学, 2015, 42 (9): 56- 60.
WANG Yasi , YAO Hongxun , SUN Xiaoshuai , et al. Representation ability research of auto-encoders in deep learning[J]. Computer Science, 2015, 42 (9): 56- 60.
[1] 张芳芳,曹兴超. 基于字面和语义相关性匹配的智能篇章排序[J]. 山东大学学报(理学版), 2018, 53(3): 46-53.
[2] 秦静,林鸿飞,徐博. 基于示例语义的音乐检索模型[J]. 山东大学学报(理学版), 2017, 52(6): 40-48.
[3] 马兰,李伟岸,尹天懿. 基于变邻域搜索改进的冲突解脱粒子群算法[J]. 山东大学学报(理学版), 2017, 52(1): 23-28.
[4] 万智萍1,吕志民1,2*. 一种自适应物种寻优的无线Mesh网络QoS路由算法[J]. J4, 2013, 48(09): 10-16.
[5] 李彬1,2,李贻斌1,荣学文1. ELM-RBF神经网络的智能优化策略[J]. J4, 2010, 45(5): 48-51.
[6] 吴瑞海 董吉文 段琪庆. 变尺度混沌粒子群与小波的地基沉降预测应用[J]. J4, 2009, 44(11): 75-78.
[7] 张国英,沙 芸,江慧娜 . 基于粒子群优化的快速KNN分类算法[J]. J4, 2006, 41(3): 34-36 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张京友,张培爱,钟海萍. 进化图论在知识型企业组织结构设计中的应用[J]. J4, 2013, 48(1): 107 -110 .
[2] 郭兰兰1,2,耿介1,石硕1,3,苑飞1,雷丽1,杜广生1*. 基于UDF方法的阀门变速关闭过程中的#br# 水击压强计算研究[J]. 山东大学学报(理学版), 2014, 49(03): 27 -30 .
[3] 史开泉. 信息规律智能融合与软信息图像智能生成[J]. 山东大学学报(理学版), 2014, 49(04): 1 -17 .
[4] 何海伦, 陈秀兰*. 变性剂和缓冲系统对适冷蛋白酶MCP-01和中温蛋白酶BP-01构象影响的圆二色光谱分析何海伦, 陈秀兰*[J]. 山东大学学报(理学版), 2013, 48(1): 23 -29 .
[5] 王碧玉,曹小红*. 算子矩阵的Browder定理的摄动[J]. 山东大学学报(理学版), 2014, 49(03): 90 -95 .
[6] 丁超1,2, 元昌安1,3*, 覃晓1,3. 基于GEP的多数据流预测算法[J]. J4, 2010, 45(7): 50 -54 .
[7] 孟祥波1,张立东1,杜子平2. 均值-方差标准下带跳的保险公司投资与再保险策略[J]. 山东大学学报(理学版), 2014, 49(05): 36 -40 .
[8] 彭振华,徐义红*,涂相求. 近似拟不变凸集值优化问题弱有效元的最优性条件[J]. 山东大学学报(理学版), 2014, 49(05): 41 -44 .
[9] 胡明娣1,2,折延宏1,王敏3. L3*系统中逻辑度量空间的拓扑性质[J]. J4, 2010, 45(6): 86 -90 .
[10] 伍芸1,2, 韩亚蝶1. 一类临界位势非线性椭圆型方程非平凡解的存在性[J]. J4, 2013, 48(4): 91 -94 .