《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (8): 33-37.doi: 10.6040/j.issn.1671-9352.0.2022.634
摘要:
设R为任意环, M为一个幂零R-双模, TR(M)为相应的张量环。假设对任意i≥0, ExtR1(G, M⊗Ri⊗RP)=0=Tor1R(M, M⊗Ri⊗RG), 其中P为投射R-模, G为Gorenstein投射R-模。证明一个TR(M)-模(X, u)如果满足u是单同态并且u的余核是Gorenstein投射R-模, 则(X, u)是Gorenstein投射TR(M)-模。
中图分类号:
1 | AUSLANDER M , BRIDGER M . Stable module theory[M]. Providence: American Mathematical Society, 1969: 94. |
2 |
ENOCHS E E , JENDA O M G . Gorenstein injective and projective modules[J]. Mathematische Zeitschrift, 1995, 220 (1): 611- 633.
doi: 10.1007/BF02572634 |
3 | HOLM H . Gorenstein homological dimensions[J]. Journal of Pure and Applied Algebra, 2004, 189 (1/2/3): 167- 193. |
4 | ENOCHS E E , JENDA O M G . Relative homological algebra[M]. Berlin: Walter de Gruyter, 2000. |
5 | COHN P M. Algebra[M]. Vol. 3, 2nd ed. New York: Wiley, 1991. |
6 |
MINAMOTO H . Ampleness of two-sided tilting complexes[J]. International Mathematics Research Notices, 2012, 2012 (1): 67- 101.
doi: 10.1093/imrn/rnr001 |
7 | ROGANOV YU V . The dimension of the tensor algebra of a projective bimodule[J]. Mathematical Notes, 1975, 18 (5/6): 1119- 1123. |
8 |
CHEN X W , LU M . Gorenstein homological properties of tensor rings[J]. Nagoya Mathematical Journal, 2020, 237, 188- 208.
doi: 10.1017/nmj.2018.19 |
9 | MAC LANE S . Categories for the working mathematician[M]. 2nd ed New York: Springer, 1998. |
[1] | 张翠萍,张文菲,杨富霞. |
[2] | 谭进,狄振兴. Morita环上的强Ding投射模[J]. 《山东大学学报(理学版)》, 2023, 58(2): 58-62. |
[3] | 牛韶花,杨刚. 形式三角矩阵环上的n-Gorenstein投射模[J]. 《山东大学学报(理学版)》, 2022, 57(10): 44-49. |
[4] | 赵壮,梁力. 平坦双模和Gorenstein模[J]. 《山东大学学报(理学版)》, 2020, 55(12): 89-92. |
[5] | 章璞. Gorenstein投射模[J]. J4, 2009, 44(2): 1-13. |
|