您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (10): 115-121.doi: 10.6040/j.issn.1671-9352.0.2023.158

• • 上一篇    

具有右正则中间幂等元的r-宽大半群

刘洋,宫春梅*   

  1. 西安建筑科技大学理学院, 陕西 西安 710055
  • 发布日期:2024-10-10
  • 通讯作者: 宫春梅(1981— ),女,教授,博士,研究方向为半群代数理论. E-mail:meigongchu@163.com
  • 基金资助:
    国家自然科学基金资助项目(12001418)

r-wide semigroups with right regular medial idempotents

LIU Yang, GONG Chunmei*   

  1. School of Science, Xian University of Architecture and Technology, Xian 710055, Shaanxi, China
  • Published:2024-10-10

摘要: 定义r-宽大半群上的右正则中间幂等元,并研究这类幂等元的性质特征,进而给出了具有右正则中间幂等元的r-宽大半群的结构。

关键词: r-宽大半群, 左正则带, 右正则中间幂等元

Abstract: The concepts of right regular medial idempotents over the r-wide semigroups is defined. The property characteristics of such idempotents are studied. A construction of r-wide semigroups with a right regular medial idempotents is established.

Key words: r-wide semigroup, left regular band, right regular medial idempotent

中图分类号: 

  • O152.7
[1] GREEN J A. On the structure of semigroups[J]. Annals of Mathematics, 1951, 54(1):163-172.
[2] PASTIJN F. A representation of a semigroup by a semigroup of matrices over a group with zero[J]. Semigroup Forum, 1975, 10(1):238-249.
[3] FOUNTAIN J B. Abundant semigroups[J]. Proceedings of London Mathematical Society, 1982, 3(1):103-129.
[4] LAWSON M V. Rees matrix semigroups[J]. Proceedings of the Edinburgh Mathematical Society, 1990, 33(2):23-37.
[5] GUO Yuqi, SHUM K P, GONG Chunmei. On(*,~)-Greens relations and Ortho-lc-monoids[J]. Communication in Algebra, 2011, 39(1):5-31.
[6] 乔阿婷. L~(*,~)-逆半群的结构[D]. 西安: 西安建筑科技大学, 2018. QIAO Ating. The structure of L~(*,~)-inverse semigroups[D]. Xian: Xian University of Architecture and Technology, 2018.
[7] 彭娇,宫春梅. 幂等元集为正规带的r-宽大半群[J]. 云南大学学报(自然科学版), 2022, 44(5):895-901. PENG Jiao, GONG Chunmei. r-wide semigroups whose idempotents form normal band[J]. Journal of Yunnan University(Natural Science Edition), 2022, 44(5):895-901.
[8] BLYTH T S, MCFADDEN R. Naturally ordered regular semigroups with a greatest idempotent[J]. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 1981, 91(1/2):107-122.
[9] LOGANATHAN M. Regular semigroups with a medial idempotent[J]. Semigroup Forum, 1987, 36(1):69-74.
[10] 伊保林. 一类有中间幂等元的正则半群[J]. 青海师范大学学报(自然科学版), 1994(4):1-3. YI Baolin. Regular semigroups with a medial idempotent[J]. Journal of Qinghai Normal University(Natural Science Edition), 1994(4):1-3.
[11] JING Fengjie. Abundant semigroups with a medial idempotent[C] //Semigroup Forum. New York: Springer-Verlag, 1995, 51(1):247-261.
[12] 张晓敏,张德菊. 具有右正则中间幂等元的富足半群(英文)[J]. 山东科学, 2006, 19(2):12-14. ZHANG Xiaomin, ZHANG Deju. Abundant semigroups with right regular medial idempotents[J]. Shandong Science, 2006, 19(2):12-14.
[13] 李勇华,付雯. 含有中间幂等元满足同余条件的◇-富足半群[J]. 数学杂志, 2011, 31(6):1015-1023. LI Yonghua, FU Wen. ◇-Abundant semigroups with a medial idempotent satisfying the congruence condition[J]. Journal of Mathematics, 2011, 31(6):1015-1023.
[14] 倪翔飞,郭小江. 具有弱中间幂等元的正则半群[J]. 数学学报(中文版), 2018, 61(1):107-122. NI Xiangfei, Guo Xiaojiang. Regular semigroups with weak medial idempotents[J]. Acta Mathematica Sinica: Chinese Series, 2018, 61(1):107-122.
[15] EL-QALLALI A. Abundant semigroups with medial idempotents[J]. Categories and General Algebraic Structures with Applications, 2021, 15(1):1-34.
[16] HOWIE J M. Fundamentals of semigroup theory[M]. Oxford: Clarendon Press, 1995
[17] 郑娇,任学明. 弱适当半群的研究[J]. 江南大学学报(自然科学版), 2013, 12(1):97-100. ZHENG Jiao, REN Xueming. Studies on weakly adequate semigroups[J]. Journal of Jiangnan University(Natural Science Edition), 2013, 12(1):97-100.
[1] 宫春梅,彭娇,白雪娜. 幂等元集为正规带的r-宽大半群上的好同余[J]. 《山东大学学报(理学版)》, 2024, 59(6): 6-12.
[2] 宫春梅,高雯,袁莹. 弱型σ半群的结构[J]. 《山东大学学报(理学版)》, 2020, 55(8): 87-91.
[3] 张晓敏. 超R*-幂单半群的圈积结构[J]. J4, 2009, 44(9): 66-69.
[4] 张晓敏 . 左C-wrpp半群的圈积结构[J]. J4, 2008, 43(6): 61-63 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!